10 research outputs found
Structure and Expression of Large (+)RNA Genomes of Viruses of Higher Eukaryotes
Abstract: Viral positive-sense RNA genomes evolve rapidly due to the high mutation rates during replication and RNA recombination, which allowing the viruses to acquire and modify genes for their adaptation. The size of RNA genome is limited by several factors, including low fidelity of RNA polymerases and packaging constraints. However, the 12-kb size limit is exceeded in the two groups of eukaryotic (+)RNA viruses – animal nidoviruses and plant closteroviruses. These virus groups have several traits in common. Their genomes contain 5′-proximal genes that are expressed via ribosomal frameshifting and encode one or two papain-like protease domains, membrane-binding domain(s), methyltransferase, RNA helicase, and RNA polymerase. In addition, some nidoviruses (i.e., coronaviruses) contain replication-associated domains, such as proofreading exonuclease, putative primase, nucleotidyltransferase, and endonuclease. In both nidoviruses and closteroviruses, the 3′-terminal part of the genome contains genes for structural and accessory proteins expressed via a nested set of coterminal subgenomic RNAs. Coronaviruses and closteroviruses have evolved to form flexuous helically symmetrical nucleocapsids as a mean to resolve packaging constraints. Since phylogenetic reconstructions of the RNA polymerase domains indicate only a marginal relationship between the nidoviruses and closteroviruses, their similar properties likely have evolved convergently, along with the increase in the genome size. © 2020, The Author(s)
The family Closteroviridae revised
Recently obtained molecular and biological information has prompted the revision of the taxonomic structure of the family Closteroviridae. In particular, mealybug-transmitted species have been separated from the genus Closterovirus and accommodated in a new genus named Ampelovirus (fromampelos, Greek for grapevine). Thus, the family now comprises three genera. Their major properties are (i) Closterovirus: type species Beet yellows virus, genome monopartite, 15.5-19.3 kb in size, a 22-25 kDa major coat protein (CP), the gene encoding the divergent CP analogue (CPd) upstream of the CP cistron, transmission by aphids, a membership of 8 definitive and 4 tentative species; (ii) Ampelo-virus: type speciesGrapevine leafroll virus 3, genome monopartite 16.9-19.5 kb in size, a 35-37 kDa major CP, a CPd cistron generally located downstream of the CP gene, transmission by pseudococcid and coccid mealybugs, a membership of 6 definitive and 5 tentative species; (iii) Crinivirus: type species Lettuce infectious yellows virus, genome essentially bipartite 15.3-19 kb in size, a 28-33 kDa CP, a CPd cistron downstream of the CP gene, transmission by whiteflies (Bemisia, Trialeurodes), a membership of 7 definitive and 3 tentative species. There are five unassigned species in the family.Peer reviewe
Stem pitting and seedling yellows symptoms of Citrus tristeza virus infection may be determined by minor sequence variants
The isolates of Citrus tristeza virus (CTV), the most destructive viral pathogen of citrus, display a high level of variability. As a result of genetic bottleneck induced by the bud-inoculation of CTV-infected material, inoculated seedlings of Citrus wilsonii Tanaka displayed different symptoms. All successfully grafted plants showed severe symptoms of stem pitting and seedling yellows, while plants in which inoculated buds died displayed mild symptoms. Since complex CTV population structure was detected in the parental host, the aim of this work was to investigate how it changed after the virus transmission, and to correlate it with observed symptoms. The coat protein gene sequence of the predominant genotype was identical in parental and grafted plants and clustered to the phylogenetic group 5 encompassing severe reference isolates. In seedlings displaying severe symptoms, the low-frequency variants clustering to other phylogenetic groups were detected, as well. Indicator plants were inoculated with buds taken from unsuccessfully grafted C. wilsonii seedlings. Surprisingly, they displayed no severe symptoms despite the presence of phylogenetic group 5 genomic variants. The results suggest that the appearance of severe symptoms in this case is probably induced by a complex CTV population structure found in seedlings displaying severe symptoms, and not directly by the predominant genomic variant
摂津国 山口村 紙漉人足駄賃切手 銀5匁
日本銀行金融研究所所蔵藩札等資料番号:ⅢAエドb2-5-17-1科学研究費助成事業(研究成果公開促進費)で電子化を実施データベースの名称:藩札等に関する統合データベース課題番号:19HP8033利用に関するお問い合わせ:画像の転載(出版物・HP等)に際しては、日本銀行貨幣博物館への申請手続きが必要です。詳しくは貨幣博物館ホームページ(http://www.imes.boj.or.jp/cm/service/)をご覧ください