18 research outputs found

    Ecological implications of fine-scale fire patchiness and severity in tropical savannas of northern Australia

    Get PDF
    Research ArticleUnderstanding fine-scale fire patchiness has significant implications for ecological processes and biodiversity conservation. It can affect local extinction of and recolonisation by relatively immobile fauna and poorly seed-dispersed flora in fire-affected areas. This study assesses fine-scale fire patchiness and severity, and associated implications for biodiversity, in north Australian tropical savanna systems. We used line transects to sample burning patterns of ground layer vegetation in different seasons and vegetation structure types, within the perimeter of 35 fires that occurred between 2009 and 2011. We evaluated two main fire characteristics: patchiness (patch density and mean patch length) and severity (inferred from char and scorch heights, and char and ash proportions). The mean burned area of ground vegetation was 83 % in the early dry season (EDS: May to July) and 93 % in the late dry season (LDS: August to November). LDS fires were less patchy (smaller and fewer unburned patches), and had higher fire severity (higher mean char and scorch heights, and twice the proportion of ash) than EDS fires. Fire patchiness varied among vegetation types, declining under more open canopy structure. The relationship between burned area and fire severity depended on season, being strongly correlated in the EDS and uncorrelated in the LDS. Simulations performed to understand the implications of patchiness on the population dynamics of fire-interval sensitive plant species showed that small amounts of patchiness substantially enhance survival. Our results indicate that the ecological impacts of high frequency fires on firesensitive regional biodiversity elements are likely to be lower than has been predicted from remotely sensed studies that are based on assumptions of homogeneous burninginfo:eu-repo/semantics/publishedVersio

    Two-phase numerical study of the flow field formed in water pump sump: influence of air entrainment

    Get PDF
    In a pump sump it is imperative that the amount of non-homogenous flow and entrained air be kept to a minimum. Free air-core vortex occurring at a water-intake pipe is an important problem encountered in hydraulic engineering. These vortices reduce pump performances, may have large effects on the operating conditions and lead to increase plant operating costs.This work is an extended study starting from 2006 in LML and published by ISSA and al. in 2008, 2009 and 2010. Several cases of sump configuration have been numerically investigated using two specific commercial codes and based on the initial geometry proposed by Constantinescu and Patel. Fluent and Star CCM+ codes are used in the previous studies. The results, obtained with a structured mesh, were strongly dependant on main geometrical sump configuration such as the suction pipe position, the submergence of the suction pipe on one hand and the turbulence model on the other hand. Part of the results showed a good agreement with experimental investigations already published. Experiments, conducted in order to select best positions of the suction pipe of a water-intake sump, gave qualitative results concerning flow disturbances in the pump-intake related to sump geometries and position of the pump intake. The purpose of this paper is to reproduce the flow pattern of experiments and to confirm the geometrical parameter that influences the flow structure in such a pump. The numerical model solves the Reynolds averaged Navier-Stokes (RANS) equations and VOF multiphase model. STAR CCM+ with an adapted mesh configuration using hexahedral mesh with prism layer near walls was used. Attempts have been made to calculate two phase unsteady flow for stronger mass flow rates and stronger submergence with low water level in order to be able to capture air entrainment. The results allow the knowledge of some limits of numerical models, of mass flow rates and of submergences for air entrainment. In the validation of this numerical model, emphasis was placed on the prediction of the number, location, size and strength of the various types of vortices coming from the free surface. Contours of vorticity at free surface, air cores, isoline of pressure surface were particularly examined for some cases. Streamlines issued from the free surface and the volume of fraction of air allows visualizing the air entrainment

    The future of renewable energy in Australia: A test for cooperative federalism?

    No full text
    In the context of the Australian federal system industry development will be influenced by the policies of each sphere of government. When announcing a set of policies in 1997 to develop the renewable energy industry the Australian federal government acknowledged the need for a cooperative approach between all governments and industry. The objective of this article is to analyse the government policies over the 1997–2007 period to promote the development of the renewable energy industry in Australia. The article highlights a number of factors that have served as barriers to the development of the industry. The research provides important insight into the difficulties associated with establishing cooperative national arrangements in areas of state government responsibility in the Australian federation. The lessons also inform the current debate on the policy initiatives needed to more effectively reduce greenhouse gas emissions from stationary energy from the increased availability of renewable energy
    corecore