6 research outputs found

    Research article Characterization of broad-spectrum biocontrol efficacy of Bacillus velezensis against Fusarium oxysporum in Triticum aestivum L.

    Get PDF
    Fungi are the most important phytopathogens that cause yield losses. The mycotoxins released by fungi cause spoilage of stored food consumed by humans and feed supplied to animals. Fungi-antagonistic microbes are gaining attention as potential biocontrol agents (BCAs). This study was designed to isolate bacterial isolates from different crops and evaluate their in vitro antifungal assay against three phytopathogens, plant growth promoting (PGP) characteristics, molecular identification, and in vivo efficiency against the most devastating phytopathogenic fungus Fusarium oxysporum Schltdl. In the in vitro experiment, the 3 isolates BA, GL-1, and 5a out of 360 isolates showed more than 60% inhibitory activity against the selected fungi in this study. On the basis of 16S rRNA sequencing and phylogenetic analysis, BA isolate was identified as Bacillus velezensis. All three isolates produced indole acetic acid (IAA), hydrogen cyanide (HCN), and cellulase enzymes, while the BA and GL-1 isolates also produced siderophores and the BA isolate also produced ammonia. BA was selected on basis of not only Biocontrol efficacy but also maximum PGPR activity compared to GL-1 and 5a. In vivo assay, the isolate BA showed a significant decrease in disease severity caused by Fusarium oxysporum by 64.97% after 100 days of inoculation on wheat (FD-08) seedlings in a greenhouse assay and enhanced the shoot root height, fresh and dry mass. The wide-ranging antagonistic action of Bacillus velezensis isolated from the phyllosphere of wheat crops showed promising fungicidal and plant growth-promoting capabilities, suggesting it can be used as a biofungicide

    The development of cost effective 100 base pair prototype DNA ladder using polymerase chain reaction

    Get PDF
    Background: In genomics, DNA scale is used as a standard unit for the measurement of unknown DNA fragments, plasmids, and PCR products during gel electrophoresis. The 100 base pair DNA ladder is essential and cost-effective in molecular biological research and is available commercially which is too expensive and not easily accessible to a common researcher for laboratory usage.Methods: The main purpose of this study was to report easily and practical method to prepare 100 base pair DNA ladder by simple PCR using pCAMBIA 1301 plasmid as a template which is an effective cost reduction strategy for laboratories. pCAMBIA 1301 was transformed into Escherichia coli (Top 10) bacteria by using heat shock method for high the yield of the plasmid. Bacteria containing our desire plasmid were cultured and plasmid was extracted from bacteria by using kit method. About 10 pairs of primers were designed from the backbone of the plasmid which amplifies 100 to 1000 base pair of PCR product with an interval of 100 base pair fragments. These fragments were optimized by using gradient thermo cycler and PCR products were purified using kit methods. For the stability of 100 base pair DNA ladder, it was placed in seven different buffers.Results: The outcome of this study shown that polymerase chain reaction was able to amplify 10 different types of DNA fragments which ranges from 100 to 1000 base pair with high qualification and size accuracy. PCR products were purified and sequenced. DNA ladder was pooled in seven different buffers and stored at -20°C. These buffers were used to optimize and evaluate the stability of the prototype DNA ladder.Conclusion: Our laboratory made 100base pair DNA ladder is very cost effective, it only cost 11 USD to prepare DNA ladder. This 100 base pair DNA ladder provides an independent quantitative unit that can be used with any biological application or technology, enabling genomes to be measured using a common metric.Keywords: 100 bp DNA ladder, pCAMBIA 1301 plasmid; PCR technique; Gel electrophoresis; Break Even Point Analysis   

    Power-Intent Systolic Array Using Modified Parallel Multiplier for Machine Learning Acceleration

    No full text
    Systolic arrays are an integral part of many modern machine learning (ML) accelerators due to their efficiency in performing matrix multiplication that is a key primitive in modern ML models. Current state-of-the-art in systolic array-based accelerators mainly target area and delay optimizations with power optimization being considered as a secondary target. Very few accelerator designs directly target power optimizations and that too using very complex algorithmic modifications that in turn result in a compromise in the area or delay performance. We present a novel Power-Intent Systolic Array (PI-SA) that is based on the fine-grained power gating of the multiplication and accumulation (MAC) block multiplier inside the processing element of the systolic array, which reduces the design power consumption quite significantly, but with an additional delay cost. To offset the delay cost, we introduce a modified decomposition multiplier to obtain smaller reduction tree and to further improve area and delay, we also replace the carry propagation adder with a carry save adder inside each sub-multiplier. Comparison of the proposed design with the baseline Gemmini naive systolic array design and its variant, i.e., a conventional systolic array design, exhibits a delay reduction of up to 6%, an area improvement of up to 32% and a power reduction of up to 57% for varying accumulator bit-widths

    Pseudorapidity distributions of charged particles as a function of mid- and forward rapidity multiplicities in pp collisions at s\sqrt{s} = 5.02, 7 and 13 TeV

    No full text
    The multiplicity dependence of the pseudorapidity density of charged particles in proton–proton (pp) collisions at centre-of-mass energies s = 5.02\sqrt{s}~=~5.02, 7 and 13 TeV measured by ALICE is reported. The analysis relies on track segments measured in the midrapidity range (∣η∣<1.5|\eta | < 1.5). Results are presented for inelastic events having at least one charged particle produced in the pseudorapidity interval ∣η∣<1|\eta |<1. The multiplicity dependence of the pseudorapidity density of charged particles is measured with mid- and forward rapidity multiplicity estimators, the latter being less affected by autocorrelations. A detailed comparison with predictions from the PYTHIA 8 and EPOS LHC event generators is also presented. The results can be used to constrain models for particle production as a function of multiplicity in pp collisions

    Centrality dependence of J/ψ and ψ(2S) production and nuclear modification in p–Pb collisions at √sNN = 8.16 TeV

    No full text
    The inclusive production of the J/ψ and ψ(2S) charmonium states is studied as a function of centrality in p-Pb collisions at a centre-of-mass energy per nucleon pair sNN−−−√=8.16 TeV at the LHC. The measurement is performed in the dimuon decay channel with the ALICE apparatus in the centre-of-mass rapidity intervals −4.46<ycms<−2.96 (Pb-going direction) and 2.03<ycms<3.53 (p-going direction), down to zero transverse momentum (pT). The J/ψ and ψ(2S) production cross sections are evaluated as a function of the collision centrality, estimated through the energy deposited in the zero degree calorimeter located in the Pb-going direction. The pT-differential J/ψ production cross section is measured at backward and forward rapidity for several centrality classes, together with the corresponding average ⟹pT⟩ and ⟹p2T⟩ values. The nuclear effects affecting the production of both charmonium states are studied using the nuclear modification factor. In the p-going direction, a suppression of the production of both charmonium states is observed, which seems to increase from peripheral to central collisions. In the Pb-going direction, however, the centrality dependence is different for the two states: the nuclear modification factor of the J/ψ increases from below unity in peripheral collisions to above unity in central collisions, while for the ψ(2S) it stays below or consistent with unity for all centralities with no significant centrality dependence. The results are compared with measurements in p-Pb collisions at sNN−−−√=5.02 TeV and no significant dependence on the energy of the collision is observed. Finally, the results are compared with theoretical models implementing various nuclear matter effects

    Production of ω mesons in pp collisions at √s = 7 TeV

    No full text
    The invariant differential cross section of inclusive ω(782) meson production at midrapidity (|y|<0.5) in pp collisions at s√ = 7 TeV was measured with the ALICE detector at the LHC over a transverse momentum range of 2 < pT < 17 GeV/c. The ω meson was reconstructed via its ω→π+π−π0 decay channel. The measured ω production cross section is compared to various calculations: PYTHIA 8.2 Monash 2013 describes the data, while PYTHIA 8.2 Tune 4C overestimates the data by about 50%. A recent NLO calculation, which includes a model describing the fragmentation of the whole vector-meson nonet, describes the data within uncertainties below 6 GeV/c, while it overestimates the data by up to 50% for higher pT. The ω/π0 ratio is in agreement with previous measurements at lower collision energies and the PYTHIA calculations. In addition, the measurement is compatible with transverse mass scaling within the measured pT range and the ratio is constant with Cω/π0 = 0.67 ± 0.03 (stat) ± 0.04 (sys) above a transverse momentum of 2.5 GeV/c
    corecore