13 research outputs found
A new method to search for a cosmic ray dipole anisotropy
We propose a new method to determine the dipole (and quadrupole) component of
a distribution of cosmic ray arrival directions, which can be applied when
there is partial sky coverage and/or inhomogeneous exposure. In its simplest
version it requires that the exposure only depends on the declination, but it
can be easily extended to the case of a small amplitude modulation in right
ascension. The method essentially combines a minimization of the
distribution in declination to obtain the multipolar components along the
North-South axis and a harmonic Rayleigh analysis for the components involving
the right ascension direction
A new composition-sensitive parameter for Ultra-High Energy Cosmic Rays
A new family of parameters intended for composition studies in cosmic ray
surface array detectors is proposed. The application of this technique to
different array layout designs has been analyzed. The parameters make exclusive
use of surface data combining the information from the total signal at each
triggered detector and the array geometry. They are sensitive to the combined
effects of the different muon and electromagnetic components on the lateral
distribution function of proton and iron initiated showers at any given primary
energy. Analytical and numerical studies have been performed in order to assess
the reliability, stability and optimization of these parameters. Experimental
uncertainties, the underestimation of the muon component in the shower
simulation codes, intrinsic fluctuations and reconstruction errors are
considered and discussed in a quantitative way. The potential discrimination
power of these parameters, under realistic experimental conditions, is compared
on a simplified, albeit quantitative way, with that expected from other surface
and fluorescence estimators.Comment: 27 pages, 17 figures. Submitted to a refereed journa
Prospect for relic neutrino searches
Unlike the relic photons, relic neutrinos have not so far been observed. The
Cosmic Neutrino Background (CB) is the oldest relic from the Big Bang,
produced a few seconds after the Bang itself. Due to their impact in cosmology,
relic neutrinos may be revealed indireclty in the near future through
cosmological observations. In this talk we concentrate on other proposals, made
in the last 30 years, to try to detect the CB directly, either in
laboratory searches (through tiny accelerations they produce on macroscopic
targets) or through astrophysical observations (looking for absorption dips in
the flux of Ultra-High Energy neutrinos, due to the annihilation of these
neutrinos with relic neutrinos at the Z-resonance). We concentrate mainly on
the first of these two possibilities.Comment: Talk given at the Nobel Symposium on Neutrino Physics, Enkoping,
Sweden, Augus 19-24, 2004; 16 page
Relic neutrino masses and the highest energy cosmic rays
We consider the possibility that a large fraction of the ultrahigh energy
cosmic rays are decay products of Z bosons which were produced in the
scattering of ultrahigh energy cosmic neutrinos on cosmological relic
neutrinos. We compare the observed ultrahigh energy cosmic ray spectrum with
the one predicted in the above Z-burst scenario and determine the required mass
of the heaviest relic neutrino as well as the necessary ultrahigh energy cosmic
neutrino flux via a maximum likelihood analysis. We show that the value of the
neutrino mass obtained in this way is fairly robust against variations in
presently unknown quantities, like the amount of neutrino clustering, the
universal radio background, and the extragalactic magnetic field, within their
anticipated uncertainties. Much stronger systematics arises from different
possible assumptions about the diffuse background of ordinary cosmic rays from
unresolved astrophysical sources. In the most plausible case that these
ordinary cosmic rays are protons of extragalactic origin, one is lead to a
required neutrino mass in the range 0.08 eV - 1.3 eV at the 68 % confidence
level. This range narrows down considerably if a particular universal radio
background is assumed, e.g. to 0.08 eV - 0.40 eV for a large one. The required
flux of ultrahigh energy cosmic neutrinos near the resonant energy should be
detected in the near future by AMANDA, RICE, and the Pierre Auger Observatory,
otherwise the Z-burst scenario will be ruled out.Comment: 19 pages, 22 figures, REVTeX
Bounds on the cosmogenic neutrino flux
Under the assumption that some part of the observed highest energy cosmic
rays consists of protons originating from cosmological distances, we derive
bounds on the associated flux of neutrinos generated by inelastic processes
with the cosmic microwave background photons. We exploit two methods. First, a
power-like injection spectrum is assumed. Then, a model-independent technique,
based on the inversion of the observed proton flux, is presented. The inferred
lower bound is quite robust. As expected, the upper bound depends on the
unknown composition of the highest energy cosmic rays. Our results represent
benchmarks for all ultrahigh energy neutrino telescopes.Comment: 12 pages, 6 figure
Upper Bounds on the Neutrino-Nucleon Inelastic Cross Section
Extraterrestrial neutrinos can initiate deeply developing air showers, and
those that traverse the atmosphere unscathed may produce cascades in the ice or
water. Up to now, no such events have been observed. This can be translated
into upper limits on the diffuse neutrino flux. On the other hand, the
observation of cosmic rays with primary energies > 10^{10} GeV suggests that
there is a guaranteed flux of cosmogenic neutrinos, arising from the decay of
charged pions (and their muon daughters) produced in proton interactions with
the cosmic microwave background. In this work, armed with these cosmogenic
neutrinos and the increased exposure of neutrino telescopes we bring up-to-date
model-independent upper bounds on the neutrino-nucleon inelastic cross section.
Uncertainties in the cosmogenic neutrino flux are discussed and taken into
account in our analysis. The prospects for improving these bounds with the
Pierre Auger Observatory are also estimated. The unprecedented statistics to be
collected by this experiment in 6 yr of operation will probe the
neutrino-nucleon inelastic cross section at the level of Standard Model
predictions.Comment: To be published in JCA
Ultra-High Energy Neutrino Fluxes: New Constraints and Implications
We apply new upper limits on neutrino fluxes and the diffuse extragalactic
component of the GeV gamma-ray flux to various scenarios for ultra high energy
cosmic rays and neutrinos. As a result we find that extra-galactic top-down
sources can not contribute significantly to the observed flux of highest energy
cosmic rays. The Z-burst mechanism where ultra-high energy neutrinos produce
cosmic rays via interactions with relic neutrinos is practically ruled out if
cosmological limits on neutrino mass and clustering apply.Comment: 10 revtex pages, 9 postscript figure
Declination dependence of the cosmic-ray flux at extreme energies
We study the large-scale distribution of the arrival directions of the
highest energy cosmic rays observed by various experiments. Despite clearly
insufficient statistics, we find a deficit of cosmic rays at energies higher
than 10^{20} eV from a large part of the sky around the celestial North Pole.
We speculate on possible explanations of this feature.Comment: 5 pages, 4 figures; v2: 11 pages, 4 figures, title changed (to avoid
confusion with the Southern hemisphere), analysis extended, more data
included, results unchanged; to be published in JCA
The Anisotropy of Cosmic Ray Arrival Direction around 10^18eV
Anisotropy in the arrival directions of cosmic rays around 10^{18}eV is
studied using data from the Akeno 20 km^2 array and the Akeno Giant Air Shower
Array (AGASA), using a total of about 216,000 showers observed over 15 years
above 10^{17}eV. In the first harmonic analysis, we have found significant
anisotropy of 4 % around 10^{18}eV, corresponding to a chance
probability of after taking the number of independent trials
into account. With two dimensional analysis in right ascension and declination,
this anisotropy is interpreted as an excess of showers near the directions of
the Galactic Center and the Cygnus region. This is a clear evidence for the
existence of the galactic cosmic ray up to the energy of 10^{18}eV. Primary
particle which contribute this anisotropy may be proton or neutron.Comment: 4pages, three figures, to appear in Procedings of 26th ICRC(Salt Lake
City
Cosmic Rays: The Second Knee and Beyond
We conduct a review of experimental results on Ultra-High Energy Cosmic Rays
(UHECR's) including measurements of the features of the spectrum, the
composition of the primary particle flux and the search for anisotropy in event
arrival direction. We find that while there is a general consensus on the
features in the spectrum -- the Second Knee, the Ankle, and (to a lesser
extent) the GZK Cutoff -- there is little consensus on the composition of the
primaries that accompany these features. This lack of consensus on the
composition makes interpretation of the agreed upon features problematic. There
is also little direct evidence about potential sources of UHECRs, as early
reports of arrival direction anisotropies have not been confirmed in
independent measurements.Comment: 46 pages, 30 figures. Topical Review to appear in J. Physics
