159 research outputs found

    Comparison of sapwood invasion by three Phytophthora spp.in different hosts

    Get PDF
    Many Phytophthora spp. have recently been isolated from native vegetation in Western Australia. As their pathogenicity is often unknown, it is not possible to provide advice to land managers on the impact of site infestation on native plants and how these infestations should be managed. We describe a rapid screening method based on sapwood invasion that has been used to compare the pathogenicity of Phytophthora arenaria, P. cinnamomi and P. multivora. Radial invasion into the xylem of six banksias and three eucalypts was assessed in an excised branch assay in summer and winter. Branches were wound inoculated and invasion was assessed by plating from a strip of tissue cut across the stem at the inoculation point and at 40 mm above and below. A symptomless infection had established in both the bark and sapwood within 6 days. P. arenaria was only isolated from the strip of tissue at the inoculation point. P. cinnamomi was isolated from the sapwood of Banksia attenuata, B. burdettii, B. menziesii and B. speciosa 40 mm above or below the inoculation point in some experiments. P. multivora was isolated from B. speciosa 40 mm below the inoculation point in one experiment. Hyphae of both species were seen in both ray parenchyma cells and xylem vessels. The invasiveness of the Phytophthora spp. was compared on the two groups of hosts using scores for sapwood invasion at the inoculation point. For banksias, P. cinnamomi and P. multivora had significantly higher invasion scores on banksias than P. arenaria but were not significantly different to one another. There was no significant difference between the three Phytophthora spp. on the eucalypt hosts. Assessing sapwood invasion provides a rapid, inexpensive and biologically meaningful way of screening the many Phytophthora spp. that have been isolated from native vegetation

    Structural Insights into Triglyceride Storage Mediated by Fat Storage-Inducing Transmembrane (FIT) Protein 2

    Get PDF
    Fat storage-Inducing Transmembrane proteins 1 & 2 (FIT1/FITM1 and FIT2/FITM2) belong to a unique family of evolutionarily conserved proteins localized to the endoplasmic reticulum that are involved in triglyceride lipid droplet formation. FIT proteins have been shown to mediate the partitioning of cellular triglyceride into lipid droplets, but not triglyceride biosynthesis. FIT proteins do not share primary sequence homology with known proteins and no structural information is available to inform on the mechanism by which FIT proteins function. Here, we present the experimentally-solved topological models for FIT1 and FIT2 using N-glycosylation site mapping and indirect immunofluorescence techniques. These methods indicate that both proteins have six-transmembrane-domains with both N- and C-termini localized to the cytosol. Utilizing this model for structure-function analysis, we identified and characterized a gain-of-function mutant of FIT2 (FLL(157-9)AAA) in transmembrane domain 4 that markedly augmented the total number and mean size of lipid droplets. Using limited-trypsin proteolysis we determined that the FLL(157-9)AAA mutant has enhanced trypsin cleavage at K86 relative to wild-type FIT2, indicating a conformational change. Taken together, these studies indicate that FIT2 is a 6 transmembrane domain-containing protein whose conformation likely regulates its activity in mediating lipid droplet formation

    Chemical diversity in a metal-organic framework revealed by fluorescence lifetime imaging

    Get PDF
    The presence and variation of chemical functionality and defects in crystalline materials, such as metal–organic frameworks (MOFs), have tremendous impact on their properties. Finding a means of identifying and characterizing this chemical diversity is an important ongoing challenge. This task is complicated by the characteristic problem of bulk measurements only giving a statistical average over an entire sample, leaving uncharacterized any diversity that might exist between crystallites or even within individual crystals. Here we show that by using fluorescence imaging and lifetime analysis, both the spatial arrangement of functionalities and the level of defects within a multivariable MOF crystal can be determined for the bulk as well as for the individual constituent crystals. We apply these methods to UiO-67, to study the incorporation of functional groups and their consequences on the structural features. We believe that the potential of the techniques presented here in uncovering chemical diversity in what is generally assumed to be homogeneous systems can provide a new level of understanding of materials properties

    The grapevine uncharacterized intrinsic protein 1 (VvXIP1) is regulated by drought stress and transports glycerol, hydrogen peroxide, heavy metals but not water

    Get PDF
    A MIP (Major Intrinsic Protein) subfamily called Uncharacterized Intrinsic Proteins (XIP) was recently described in several fungi and eudicot plants. In this work, we cloned a XIP from grapevine, VvXIP1, and agrobacterium-mediated transformation studies in Nicotiana benthamiana revealed that the encoded aquaporin shows a preferential localization at the endoplasmic reticulum membrane. Stopped-flow spectrometry in vesicles from the aqy-null yeast strain YSH1172 overexpressing VvXIP1 showed that VvXIP1 is unable to transport water but is permeable to glycerol. Functional studies with the ROS sensitive probe CM-H(2)DCFDA in intact transformed yeasts showed that VvXIP1 is also able to permeate hydrogen peroxide (H2O2). Drop test growth assays showed that besides glycerol and H2O2, VvXIP1 also transports boric acid, copper, arsenic and nickel. Furthermore, we found that VvXIP1 transcripts were abundant in grapevine leaves from field grown plants and strongly repressed after the imposition of severe water-deficit conditions in potted vines. The observed downregulation of VvXIP1 expression in cultured grape cells in response to ABA and salt, together with the increased sensitivity to osmotic stress displayed by the aqy-null yeast overexpressing VvXIP1, corroborates the role of VvXIP1 in osmotic regulation besides its involvement in H2O2 transport and metal homeostasis.This work was supported by European Union Funds (FEDER/COMPETE Operational Competitiveness Programme) and Portuguese national Funds (FCT-Portuguese Foundation for Science and Technology): KBBE-2012-6-3117 "Inovinne", FCOMP-01-0124-FEDER-022692 and PTDC/AGR-ALI/100636/2008. HN (SFRH/BD/74257/2010) and APM (SFRH/BD/65046/2009) were supported by PhD grants from FCT. The Interuniversity Attraction Poles Programme-Belgian Science Policy (IAP7/29) and the Belgian French community ARC11/16-036 project.info:eu-repo/semantics/publishedVersio

    Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation

    Get PDF
    Developing low-cost electrocatalysts to replace precious Ir-based materials is key for oxygen evolution reaction (OER). Here, we report atomically dispersed nickel coordinated with nitrogen and sulfur species in porous carbon nanosheets as an electrocatalyst exhibiting excellent activity and durability for OER with a low overpotential of 1.51 V at 10 mA cm(-2) and a small Tafel slope of 45 mV dec(-1) in alkaline media. Such electrocatalyst represents the best among all reported transition metal- and/or heteroatom-doped carbon electrocatalysts and is even superior to benchmark Ir/C. Theoretical and experimental results demonstrate that the well-dispersed molecular S vertical bar NiNx species act as active sites for catalyzing OER. The atomic structure of S vertical bar NiNx centers in the carbon matrix is clearly disclosed by aberration-corrected scanning transmission electron microscopy and synchrotron radiation X-ray absorption spectroscopy together with computational simulations. An integrated photoanode of nanocarbon on a Fe2O3 nanosheet array enables highly active solar-driven oxygen production

    Connectivity and resilience of coral reef metapopulations in marine protected areas : matching empirical efforts to predictive needs

    Get PDF
    © 2009 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Coral Reefs 28 (2009): 327-337, doi:10.1007/s00338-009-0466-z.Design and decision-making for marine protected areas (MPAs) on coral reefs require prediction of MPA effects with population models. Modeling of MPAs has shown how the persistence of metapopulations in systems of MPAs depends on the size and spacing of MPAs, and levels of fishing outside the MPAs. However, the pattern of demographic connectivity produced by larval dispersal is a key uncertainty in those modeling studies. The information required to assess population persistence is a dispersal matrix containing the fraction of larvae traveling to each location from each location, not just the current number of larvae exchanged among locations. Recent metapopulation modeling research with hypothetical dispersal matrices has shown how the spatial scale of dispersal, degree of advection versus diffusion, total larval output, and temporal and spatial variability in dispersal influence population persistence. Recent empirical studies using population genetics, parentage analysis, and geochemical and artificial marks in calcified structures have improved the understanding of dispersal. However, many such studies report current self-recruitment (locally produced settlement/settlement from elsewhere), which is not as directly useful as local retention (locally produced settlement/total locally released), which is a component of the dispersal matrix. Modeling of biophysical circulation with larval particle tracking can provide the required elements of dispersal matrices and assess their sensitivity to flows and larval behavior, but it requires more assumptions than direct empirical methods. To make rapid progress in understanding the scales and patterns of connectivity, greater communication between empiricists and population modelers will be needed. Empiricists need to focus more on identifying the characteristics of the dispersal matrix, while population modelers need to track and assimilate evolving empirical results.Work by CB Paris was supported by the National Science Foundation grant NSF-OCE 0550732. Work by M-A Coffroth and SR Thorrold was supported by the National Science Foundation grant NSF-OCE 0424688. Work by TL Shearer was supported by an International Cooperative Biodiversity Group grant R21 TW006662-01 from the Fogarty International Center at the National Institutes of Health

    Amyloid Plaques Beyond Aβ: A Survey of the Diverse Modulators of Amyloid Aggregation

    Get PDF
    Aggregation of the amyloid-β (Aβ) peptide is strongly correlated with Alzheimer’s disease (AD). Recent research has improved our understanding of the kinetics of amyloid fibril assembly and revealed new details regarding different stages in plaque formation. Presently, interest is turning toward studying this process in a holistic context, focusing on cellular components which interact with the Aβ peptide at various junctures during aggregation, from monomer to cross-β amyloid fibrils. However, even in isolation, a multitude of factors including protein purity, pH, salt content, and agitation affect Aβ fibril formation and deposition, often producing complicated and conflicting results. The failure of numerous inhibitors in clinical trials for AD suggests that a detailed examination of the complex interactions that occur during plaque formation, including binding of carbohydrates, lipids, nucleic acids, and metal ions, is important for understanding the diversity of manifestations of the disease. Unraveling how a variety of key macromolecular modulators interact with the Aβ peptide and change its aggregation properties may provide opportunities for developing therapies. Since no protein acts in isolation, the interplay of these diverse molecules may differentiate disease onset, progression, and severity, and thus are worth careful consideration

    The non-immunosuppressive management of childhood nephrotic syndrome

    Get PDF

    Training Load and Fatigue Marker Associations with Injury and Illness: A Systematic Review of Longitudinal Studies

    Get PDF
    corecore