80 research outputs found

    Protective effect of Arque-Ajeeb on acute experimental diarrhoea in rats

    Get PDF
    BACKGROUND: Diarrhoea is a major health problem for children worldwide, accounting for 5–8 million deaths each year. Arque-Ajeeb (AA) is a compound formulation of Unani medicine. It is reputed for its beneficial effects in the treatment of diarrhoea and cholera, but the claim of its efficacy is yet to be tested. Therefore the present study has been planned to investigate the real efficacy of this drug in rats. METHODS: The effect of Arque-Ajeeb was investigated for antidiarrhoeal activity against charcoal-induced gut transit, serotonin-induced diarrhoea and PGE(2)-induced small intestine enteropooling in rats. The control, standard and test groups of experimental animals were administered with normal saline (p.o.), diphenoxylate hydrochloride (5 mg/kg, p.o.) and Arque-Ajeeb (0.07 ml and 0.14 ml/kg, p.o.) respectively except the control group of PGE(2)-induced small intestine enteropooling which received only 5% ethanol in normal saline (i.p.). Charcoal (10 ml/kg, p.o.) and serotonin (600 μg/kg, i.p.) were administered after 30 min, while PGE(2 )(100 μg/kg, p.o.) was administered immediately afterwards. The distance traveled by charcoal in small intestine was measured after 15 and 30 min of charcoal administration, diarrhoea was observed every 30-min for six hour after serotonin administration and the volume of intestinal fluid was measured after 30 min of PGE(2 )administration. RESULTS: Arque-Ajeeb (0.07 ml and 0.14 ml/kg) significantly inhibited the frequency of defaecation and decreased the propulsion of charcoal meal through the gastrointestinal tract, reduced the wetness of faecal droppings in serotonin-induced diarrhoea and also reduced the PGE(2)-induced small intestine enteropooling. CONCLUSION: Arque-Ajeeb may have potential to reduce the diarrhoea in rats. Thus the drug may prove to be an alternate remedy in diarrhoea

    Nitrogen limitation constrains sustainability of ecosystem response to CO2

    Full text link
    Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, it is unknown whether CO2-induced stimulation of plant growth and biomass accumulation will be sustained or whether limited nitrogen (N) availability constrains greater plant growth in a CO2-enriched world(1-9). Here we show, after a six-year field study of perennial grassland species grown under ambient and elevated levels of CO2 and N, that low availability of N progressively suppresses the positive response of plant biomass to elevated CO2. Initially, the stimulation of total plant biomass by elevated CO2 was no greater at enriched than at ambient N supply. After four to six years, however, elevated CO2 stimulated plant biomass much less under ambient than enriched N supply. This response was consistent with the temporally divergent effects of elevated CO2 on soil and plant N dynamics at differing levels of N supply. Our results indicate that variability in availability of soil N and deposition of atmospheric N are both likely to influence the response of plant biomass accumulation to elevated atmospheric CO2. Given that limitations to productivity resulting from the insufficient availability of N are widespread in both unmanaged and managed vegetation(5,7-9), soil N supply is probably an important constraint on global terrestrial responses to elevated CO2.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62769/1/nature04486.pd

    Patient attributes warranting consideration in clinical practice guidelines, health workforce planning and policy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order for clinical practice guidelines (CPGs) to meet their broad objective of enhancing the quality of care and supporting improved patient outcomes, they must address the needs of diverse patient populations. We set out to explore the patient attributes that are likely to demand a unique approach to the management of chronic disease, and which are crucial if evidence or services planning is to reflect clinic populations. These were incorporated into a new conceptual framework; using diabetes mellitus as an exemplar.</p> <p>Methods</p> <p>The patient attributes that informed the framework were identified from CPGs, the diabetes literature, an expert academic panel, and two cross-disciplinary panels; and agreed upon using a modified nominal group technique.</p> <p>Results</p> <p>Full consensus was reached on twenty-four attributes. These factors fell into one of three themes: (1) type/stage of disease, (2) morbid events, and (3) factors impacting on capacity to self-care. These three themes were incorporated in a convenient way in the workforce evidence-based (WEB) model.</p> <p>Conclusions</p> <p>While biomedical factors are frequently recognised in published clinical practice guidelines, little attention is given to attributes influencing a person's capacity to self-care. Paying explicit attention to predictable threats to effective self-care in clinical practice guidelines, by drawing on the WEB model, may assist in refinements that would address observed disparities in health outcomes across socio-economic groups. The WEB model also provides a framework to inform clinical training, and health services and workforce planning and research; including the assessment of healthcare needs, and the allocation of healthcare resources.</p

    Functional redundancy and sensitivity of fish assemblages in European rivers, lakes and estuarine ecosystems

    Get PDF
    The impact of species loss on ecosystems functioning depends on the amount of trait similarity between species, i.e. functional redundancy, but it is also influenced by the order in which species are lost. Here we investigated redundancy and sensitivity patterns across fish assemblages in lakes, rivers and estuaries. Several scenarios of species extinction were simulated to determine whether the loss of vulnerable species (with high propensity of extinction when facing threats) causes a greater functional alteration than random extinction. Our results indicate that the functional redundancy tended to increase with species richness in lakes and rivers, but not in estuaries. We demonstrated that i) in the three systems, some combinations of functional traits are supported by non-redundant species, ii) rare species in rivers and estuaries support singular functions not shared by dominant species, iii) the loss of vulnerable species can induce greater functional alteration in rivers than in lakes and estuaries. Overall, the functional structure of fish assemblages in rivers is weakly buffered against species extinction because vulnerable species support singular functions. More specifically, a hotspot of functional sensitivity was highlighted in the Iberian Peninsula, which emphasizes the usefulness of quantitative criteria to determine conservation prioritiesinfo:eu-repo/semantics/publishedVersio

    Widespread Presence of Human BOULE Homologs among Animals and Conservation of Their Ancient Reproductive Function

    Get PDF
    Sex-specific traits that lead to the production of dimorphic gametes, sperm in males and eggs in females, are fundamental for sexual reproduction and accordingly widespread among animals. Yet the sex-biased genes that underlie these sex-specific traits are under strong selective pressure, and as a result of adaptive evolution they often become divergent. Indeed out of hundreds of male or female fertility genes identified in diverse organisms, only a very small number of them are implicated specifically in reproduction in more than one lineage. Few genes have exhibited a sex-biased, reproductive-specific requirement beyond a given phylum, raising the question of whether any sex-specific gametogenesis factors could be conserved and whether gametogenesis might have evolved multiple times. Here we describe a metazoan origin of a conserved human reproductive protein, BOULE, and its prevalence from primitive basal metazoans to chordates. We found that BOULE homologs are present in the genomes of representative species of each of the major lineages of metazoans and exhibit reproductive-specific expression in all species examined, with a preponderance of male-biased expression. Examination of Boule evolution within insect and mammalian lineages revealed little evidence for accelerated evolution, unlike most reproductive genes. Instead, purifying selection was the major force behind Boule evolution. Furthermore, loss of function of mammalian Boule resulted in male-specific infertility and a global arrest of sperm development remarkably similar to the phenotype in an insect boule mutation. This work demonstrates the conservation of a reproductive protein throughout eumetazoa, its predominant testis-biased expression in diverse bilaterian species, and conservation of a male gametogenic requirement in mice. This shows an ancient gametogenesis requirement for Boule among Bilateria and supports a model of a common origin of spermatogenesis
    corecore