3,755 research outputs found
Operator entanglement of two-qubit joint unitary operations revisited: Schmidt number approach
Operator entanglement of two-qubit joint unitary operations is revisited.
Schmidt number is an important attribute of a two-qubit unitary operation, and
may have connection with the entanglement measure of the unitary operator. We
found the entanglement measure of two-qubit unitary operators is classified by
the Schmidt number of the unitary operators. The exact relation between the
operator entanglement and the parameters of the unitary operator is clarified
too.Comment: To appear in the Brazilian Journal of Physic
Efficient producer mobility support in named data networking
Named Data Networking (NDN) is a promising architecture for the future Internet and it is mainly designed for efficient content delivery and retrieval. However, producer mobility support is one of the challenging problems of NDN. This paper proposes a scheme which aims to optimize the tunneling-based producer mobility solution in NDN. It does not require NDN routers to change their routing tables (Forwarding Information Base) after a producer moves. Instead, the Interest packet can be sent from a consumer to the moved producer using the tunnel. The piggybacked Data packet which is sent back to the consumer will trigger the consumer to send the following Interest packets through the optimized path to the producer. Moreover, a naming scheme is proposed so that the NDN caching function can be fully utilized. An analysis is carried out to evaluate the performance of the proposal. The results indicate that the proposed scheme reduces the network cost compared to related works and supports route optimization for enhanced producer mobility support in NDN
Mathematically Gifted Adolescents Have Deficiencies in Social Valuation and Mentalization
Many mathematically gifted adolescents are characterized as being indolent, underachieving and unsuccessful despite their high cognitive ability. This is often due to difficulties with social and emotional development. However, research on social and emotional interactions in gifted adolescents has been limited. The purpose of this study was to observe differences in complex social strategic behaviors between gifted and average adolescents of the same age using the repeated Ultimatum Game. Twenty-two gifted adolescents and 24 average adolescents participated in the Ultimatum Game. Two adolescents participate in the game, one as a proposer and the other as a responder. Because of its simplicity, the Ultimatum Game is an apt tool for investigating complex human emotional and cognitive decision-making in an empirical setting. We observed strategic but socially impaired offers from gifted proposers and lower acceptance rates from gifted responders, resulting in lower total earnings in the Ultimatum Game. Thus, our results indicate that mathematically gifted adolescents have deficiencies in social valuation and mentalization
Gastrojejunocolic fistula after gastrojejunostomy: a case series
<p>Abstract</p> <p>Introduction</p> <p>Gastrojejunocolic (GJC) fistulae represent a significant post-surgical cause of morbidity and mortality. GJC fistulae represent rare post-surgical complications, and most are associated with gastric surgery. In the past, this complication has been under-recognized because a fistula may form years after surgery.</p> <p>Case presentation</p> <p>We describe two cases of gastrojejunocolic fistula in men aged 67 and 60 who both initially presented with watery diarrhea and weight loss. Upper GI studies with small bowel follow-through or barium contrast enema studies allowed a conclusive diagnosis to be made. Both patients underwent one-stage en bloc resection, and their postoperative course was uneventful.</p> <p>Conclusion</p> <p>With surgery, this condition is entirely correctable. Pre-operative nutritional status should be evaluated in patients undergoing corrective surgery, and total parenteral nutrition plays a major role in the provision of bowel rest to allow recovery in malnourished patients.</p
Using biomarkers to predict TB treatment duration (Predict TB): a prospective, randomized, noninferiority, treatment shortening clinical trial
Background : By the early 1980s, tuberculosis treatment was shortened from 24 to 6 months, maintaining relapse rates of 1-2%. Subsequent trials attempting shorter durations have failed, with 4-month arms consistently having relapse rates of 15-20%. One trial shortened treatment only among those without baseline cavity on chest x-ray and whose month 2 sputum culture converted to negative. The 4-month arm relapse rate decreased to 7% but was still significantly worse than the 6-month arm (1.6%, P<0.01). We hypothesize that PET/CT characteristics at baseline, PET/CT changes at one month, and markers of residual bacterial load will identify patients with tuberculosis who can be cured with 4 months (16 weeks) of standard treatment.Methods: This is a prospective, multicenter, randomized, phase 2b, noninferiority clinical trial of pulmonary tuberculosis participants. Those eligible start standard of care treatment. PET/CT scans are done at weeks 0, 4, and 16 or 24. Participants who do not meet early treatment completion criteria (baseline radiologic severity, radiologic response at one month, and GeneXpert-detectable bacilli at four months) are placed in Arm A (24 weeks of standard therapy). Those who meet the early treatment completion criteria are randomized at week 16 to continue treatment to week 24 (Arm B) or complete treatment at week 16 (Arm C). The primary endpoint compares the treatment success rate at 18 months between Arms B and C.Discussion: Multiple biomarkers have been assessed to predict TB treatment outcomes. This study uses PET/CT scans and GeneXpert (Xpert) cycle threshold to risk stratify participants. PET/CT scans are not applicable to global public health but could be used in clinical trials to stratify participants and possibly become a surrogate endpoint. If the Predict TB trial is successful, other immunological biomarkers or transcriptional signatures that correlate with treatment outcome may be identified. TRIAL REGISTRATION: NCT02821832
Maximum Parsimony on Phylogenetic networks
Abstract Background Phylogenetic networks are generalizations of phylogenetic trees, that are used to model evolutionary events in various contexts. Several different methods and criteria have been introduced for reconstructing phylogenetic trees. Maximum Parsimony is a character-based approach that infers a phylogenetic tree by minimizing the total number of evolutionary steps required to explain a given set of data assigned on the leaves. Exact solutions for optimizing parsimony scores on phylogenetic trees have been introduced in the past. Results In this paper, we define the parsimony score on networks as the sum of the substitution costs along all the edges of the network; and show that certain well-known algorithms that calculate the optimum parsimony score on trees, such as Sankoff and Fitch algorithms extend naturally for networks, barring conflicting assignments at the reticulate vertices. We provide heuristics for finding the optimum parsimony scores on networks. Our algorithms can be applied for any cost matrix that may contain unequal substitution costs of transforming between different characters along different edges of the network. We analyzed this for experimental data on 10 leaves or fewer with at most 2 reticulations and found that for almost all networks, the bounds returned by the heuristics matched with the exhaustively determined optimum parsimony scores. Conclusion The parsimony score we define here does not directly reflect the cost of the best tree in the network that displays the evolution of the character. However, when searching for the most parsimonious network that describes a collection of characters, it becomes necessary to add additional cost considerations to prefer simpler structures, such as trees over networks. The parsimony score on a network that we describe here takes into account the substitution costs along the additional edges incident on each reticulate vertex, in addition to the substitution costs along the other edges which are common to all the branching patterns introduced by the reticulate vertices. Thus the score contains an in-built cost for the number of reticulate vertices in the network, and would provide a criterion that is comparable among all networks. Although the problem of finding the parsimony score on the network is believed to be computationally hard to solve, heuristics such as the ones described here would be beneficial in our efforts to find a most parsimonious network.</p
Rare Z-decay into light CP-odd Higgs bosons: a comparative study in different new physics models
Various new physics models predict a light CP-odd Higgs boson (labeled as
) and open up new decay modes for Z-boson, such as ,
and , which could be explored at the GigaZ option of
the ILC. In this work we investigate these rare decays in several new physics
models, namely the type-II two Higgs doublet model (type-II 2HDM), the
lepton-specific two Higgs doublet model (L2HDM), the nearly minimal
supersymetric standard model (nMSSM) and the next-to-minimal supersymmetric
standard model (NMSSM). We find that in the parameter space allowed by current
experiments, the branching ratios can reach for
(), for and for , which
implies that the decays and may be accessible
at the GigaZ option. Moreover, since different models predict different
patterns of the branching ratios, the measurement of these rare decays at the
GigaZ may be utilized to distinguish the models.Comment: Version in JHEP (discussions added, errors corrected
Quantum teleportation using active feed-forward between two Canary Islands
Quantum teleportation [1] is a quintessential prerequisite of many quantum
information processing protocols [2-4]. By using quantum teleportation, one can
circumvent the no-cloning theorem [5] and faithfully transfer unknown quantum
states to a party whose location is even unknown over arbitrary distances. Ever
since the first experimental demonstrations of quantum teleportation of
independent qubits [6] and of squeezed states [7], researchers have
progressively extended the communication distance in teleportation, usually
without active feed-forward of the classical Bell-state measurement result
which is an essential ingredient in future applications such as communication
between quantum computers. Here we report the first long-distance quantum
teleportation experiment with active feed-forward in real time. The experiment
employed two optical links, quantum and classical, over 143 km free space
between the two Canary Islands of La Palma and Tenerife. To achieve this, the
experiment had to employ novel techniques such as a frequency-uncorrelated
polarization-entangled photon pair source, ultra-low-noise single-photon
detectors, and entanglement-assisted clock synchronization. The average
teleported state fidelity was well beyond the classical limit of 2/3.
Furthermore, we confirmed the quality of the quantum teleportation procedure
(without feed-forward) by complete quantum process tomography. Our experiment
confirms the maturity and applicability of the involved technologies in
real-world scenarios, and is a milestone towards future satellite-based quantum
teleportation
A Guided Workbook Intervention (WorkPlan) to Support Work-Related Goals Among Cancer Survivors: Protocol of a Feasibility Randomized Controlled Trial
Background: Returning to and staying at work following illness is associated with better physical and psychological functioning. Not working has been shown to be associated with reduced self-esteem, lowered self-efficacy, and decreased belief in one's ability to return to the workplace. Although there is a growing body of research looking at what predicts return to work following cancer treatment, there are fewer studies examining interventions targeting return to work. Objective: The primary objective is to assess the feasibility and acceptability of a theoretically led workbook intervention designed to support cancer patients in returning to work to inform a fully powered randomized controlled trial (RCT). Methods: This is a multicenter feasibility RCT where the main analysis uses a qualitative approach. Sixty participants (aged 18-65 years) who have received a diagnosis of cancer and who intend to return to work will be randomized to either the WorkPlan intervention group or a usual care group (ratio 1:1). Participants in the intervention group will receive a guided workbook intervention (which contains activities aimed at eliciting thoughts and beliefs, identifying targets and actions, and concrete steps to achieve goals) and will receive telephone support over a 4-week period. The primary outcome measure is time taken to return to work (in days), and secondary outcome measures include mood, quality of life, illness perceptions, and job satisfaction. Data will be collected through postal questionnaires administered immediately postintervention and at 6- and 12-month follow-ups. In addition, interviews will be undertaken immediately postintervention (to explore acceptability of the intervention and materials) and at 12-month follow-up (to explore perceptions of participation in the trial and experiences of returning to work). Results: Enrollment for the study will be completed in May 2016. Data analysis will commence in April 2017, and the first results are expected to be submitted for publication in late 2017. Conclusions: Currently no standardized return-to-work intervention based on targeting cancer patient beliefs is in existence. If the intervention is shown to be feasible and acceptable, the results of this study will inform a future full RCT with the potential to provide a valuable and cost-efficient tool in supporting cancer survivors in the return-to-work process
- …