9 research outputs found

    CETACEAN RECORDS ALONG SAO PAULO STATE COAST, SOUTHEASTERN BRAZIL

    Get PDF
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The Sao Paulo state (SP) coast (23 degrees 18'S, 44 degrees 42'W; 25 degrees 14'S, 48 degrees 01'W) is of approximately 600 km in length, bordering the Western Atlantic Ocean, in southeastern Brazil. Cetacean sightings and strandings have long been observed throughout this area. Scattered data from scientific publications, skeletal remains in museums, photographs and articles from newspaper files, universities and aquaria have been organised and updated since 1993. Field investigations on strandings and sightings have also been conducted. A total of 29 cetacean species have been recorded, including 7 baleen whales (Mysticeti) and 22 toothed whales (Odontoceti), as follows: Balaenoptera physalus, B. borealis, B. edeni, B. acutorostrata, B. bonaerensis, Megaptera novaeangliae, Eubalaena australis, Physeter macrocephalus, Kogia breviceps, K. sima, Berardius arnuxii, Mesoplodon europaeus, M. mirus, Ziphius cavirostris, Orcinus orca, Feresa attenuata, Globicephala melas, G. macrorhynchus, Pseudorca crassidens, Delphinus capensis, Lagenodelphis hosei, Steno bredanensis, Tursiops truncatus, Stenella frontalis, S. longirostris, S. coeruleoalba, Lissodelphis peronii, Sotalia guianensis and Pontoporia blainvillei. Several species have been observed only once and include strays from their areas of common distribution, as well as species with known preferences for offshore distribution. Others, such as P. blainvillei and S. guianensis, are common coastal dwellers year-round. Z. cavirostris, P. crassidens and L. hosei are reported for the first time on the SP coast.582123142Cetacean International SocietyWhale & Dolphin Conservation SocietyWWF-Fundo Mundial para a NaturezaEarthwatch InstitutePetrobrasCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Mesenchymal tumor organoid models recapitulate rhabdomyosarcoma subtypes

    Get PDF
    Rhabdomyosarcomas (RMS) are mesenchyme-derived tumors and the most common childhood soft tissue sarcomas. Treatment is intense, with a nevertheless poor prognosis for high-risk patients. Discovery of new therapies would benefit from additional preclinical models. Here, we describe the generation of a collection of 19 pediatric RMS tumor organoid (tumoroid) models (success rate of 41%) comprising all major subtypes. For aggressive tumors, tumoroid models can often be established within 4–8 weeks, indicating the feasibility of personalized drug screening. Molecular, genetic, and histological characterization show that the models closely resemble the original tumors, with genetic stability over extended culture periods of up to 6 months. Importantly, drug screening reflects established sensitivities and the models can be modified by CRISPR/Cas9 with TP53 knockout in an embryonal RMS model resulting in replicative stress drug sensitivity. Tumors of mesenchymal origin can therefore be used to generate organoid models, relevant for a variety of preclinical and clinical research questions

    Structure of the human signal peptidase complex reveals the determinants for signal peptide cleavage

    No full text
    The signal peptidase complex (SPC) is an essential membrane complex in the endoplasmic reticulum (ER), where it removes signal peptides (SPs) from a large variety of secretory pre-proteins with exquisite specificity. Although the determinants of this process have been established empirically, the molecular details of SP recognition and removal remain elusive. Here, we show that the human SPC exists in two functional paralogs with distinct proteolytic subunits. We determined the atomic structures of both paralogs using electron cryo-microscopy and structural proteomics. The active site is formed by a catalytic triad and abuts the ER membrane, where a transmembrane window collectively formed by all subunits locally thins the bilayer. Molecular dynamics simulations indicate that this unique architecture generates specificity for SPs based on the length of their hydrophobic segments

    A Preformulation Study of a New Medicine for Chagas Disease Treatment: Physicochemical Characterization, Thermal Stability, and Compatibility of Benznidazole

    No full text
    This work aimed the studies of physicochemical characterization, thermal stability, and compatibility of benznidazole (BNZ) drug by spectroscopy (NMR, IR), thermoanalytical (differential thermal analysis, differential scanning calorimetry, and thermogravimetry), and chromatographic (HPLC) techniques, beyond the analytical tools of Van’t Hoff equation and Ozawa model. The compatibility study was conducted by binary mixtures (1:1, w/w) of the drug with microcrystalline cellulose 102 and 250, anhydrous lactose, and sodium starch glycolate. The physicochemical characterization confirmed data reported in scientific literature, guaranteeing authenticity of the analyzed raw material. The drug melts at 191.68°C (∆H, 119.71 J g−1), characteristic of a non-polymorphic raw material, and a main stage decomposition at 233.76–319.35°C (∆m, 43.32%) occurred, ending the study with almost all mass volatilized. The quantification of drug purity demonstrated a correlation of 99.63% between the data obtained by chromatographic (99.20%) and thermoanalytical technique (99.56%). The Arrhenius equation and Ozawa model showed a zero-order kinetic behavior for the drug decomposition, and a calculated provisional validity time was 2.37 years at 25°C. The compatibility study evidenced two possible chemical incompatibilities between BNZ and the tested excipients, both associated by the authors to the reaction of the BNZ’s amine and a polymer carbohydrate’s carbonile, being maillard reactions. The BNZ reaction with anhydrous lactose is more pronounced than with the sodium starch glycolate because the lactose has more free hydroxyl groups to undergo reduction by the drug. In this sense, this work guides the development of a new solid pharmaceutical product for Chagas disease treatment, with defined quality control parameters and physicochemical stability

    Local immune response to food antigens drives meal-induced abdominal pain

    Get PDF
    Up to 20% of people worldwide develop gastrointestinal symptoms following a meal(1), leading to decreased quality of life, substantial morbidity and high medical costs. Although the interest of both the scientific and lay communities in this issue has increased markedly in recent years, with the worldwide introduction of gluten-free and other diets, the underlying mechanisms of food-induced abdominal complaints remain largely unknown. Here we show that a bacterial infection and bacterial toxins can trigger an immune response that leads to the production of dietary-antigen-specific IgE antibodies in mice, which are limited to the intestine. Following subsequent oral ingestion of the respective dietary antigen, an IgE- and mast-cell-dependent mechanism induced increased visceral pain. This aberrant pain signalling resulted from histamine receptor H-1-mediated sensitization of visceral afferents. Moreover, injection of food antigens (gluten, wheat, soy and milk) into the rectosigmoid mucosa of patients with irritable bowel syndrome induced local oedema and mast cell activation. Our results identify and characterize a peripheral mechanism that underlies food-induced abdominal pain, thereby creating new possibilities for the treatment of irritable bowel syndrome and related abdominal pain disorders. In mice, oral tolerance to food antigens can break down after enteric infection, and this leads to food-induced pain resembling irritable bowel syndrome in humans

    Myco-Remediation of Xenobiotic Organic Compounds for a Sustainable Environment: A Critical Review

    No full text
    corecore