8,985 research outputs found

    Two-dimensional PCA : a new approach to appearance-based face representation and recognition

    Get PDF
    2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Pre-intercalation: A valuable approach for the improvement of post-lithium battery materials

    Get PDF
    With the growing concern around the sustainability and supply of lithium, the need for alternative rechargeable energy storage technologies has become ever more pressing. Sodium-, potassium-, magnesium-, and zinc-ion batteries are fast becoming viable alternatives but are held back by capacity, rate and stability problems that have not developed comparably to lithium-ion batteries. To overcome these shortcomings and reduce the reliance on lithium, electrode materials used for these post-lithium batteries must be improved. Pre-intercalation of foreign species into the lattice of promising electrode materials can enhance their electrochemical performance in comparison to the un-pre-intercalated counterparts, closing the performance gap with lithium-ion batteries. This review article covers the common methods of pre-intercalating foreign species into electrode materials, the resulting structural effects and the improvements that are observed in the materials’ electrochemical performance for post-lithium batteries. Timely and impactful work reported previously are summarised as examples of these improvements, demonstrating the value and ever-growing importance of pre-intercalation in today’s battery landscape

    Scheduling a batch-processing machine subject to precedence constraints, release dates and identical processing times

    Get PDF
    2004-2005 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    KPCA Plus LDA : a complete kernel Fisher discriminant framework for feature extraction and recognition

    Get PDF
    2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Layered Potassium Titanium Niobate/Reduced Graphene Oxide Nanocomposite as a Potassium-Ion Battery Anode

    Get PDF
    With graphite currently leading as the most viable anode for potassium-ion batteries (KIBs), other materials have been left relatively under-examined. Transition metal oxides are among these, with many positive attributes such as synthetic maturity, long-term cycling stability and fast redox kinetics. Therefore, to address this research deficiency we report herein a layered potassium titanium niobate KTiNbO5 (KTNO) and its rGO nanocomposite (KTNO/rGO) synthesised via solvothermal methods as a high-performance anode for KIBs. Through effective distribution across the electrically conductive rGO, the electrochemical performance of the KTNO nanoparticles was enhanced. The potassium storage performance of the KTNO/rGO was demonstrated by its first charge capacity of 128.1 mAh g-1 and reversible capacity of 97.5 mAh g-1 after 500 cycles at 20 mA g-1, retaining 76.1% of the initial capacity, with an exceptional rate performance of 54.2 mAh g-1 at 1 A g-1. Furthermore, to investigate the attributes of KTNO in-situ XRD was performed, indicating a low-strain material. Ex-situ X-ray photoelectron spectra further investigated the mechanism of charge storage, with the titanium showing greater redox reversibility than the niobium. This work suggests this low-strain nature is a highly advantageous property and well worth regarding KTNO as a promising anode for future high-performance KIBs

    Shear friction strength of monolithic concrete interfaces

    Get PDF
    YesThis paper presents an integrated model for shear friction strength of monolithic concrete interfaces derived from the upper-bound theorem of concrete plasticity. The model accounts for the effects of applied axial stresses and transverse reinforcement on the shear friction action at interfacial shear cracks. Simple equations were also developed to generalize the effectiveness factor for compression, ratio of effective tensile to compressive strengths and angle of concrete friction. The reliability of the proposed model was then verified through comparisons with previous empirical equations and 103 push-off test specimens compiled from different sources in the literature. The previous equations considerably underestimate the concrete shear transfer capacity and the underestimation is notable for the interfaces subjected to additional axial stresses. The proposed model provides superior accuracy in predicting the shear friction strength, resulting in a mean between experimental and predicted friction strengths of 0.97 and least scatter. Moreover, the proposed model has consistent trends with test results in evaluating the effect of various parameters on the shear friction strength

    Deep motion tracking from multiview angiographic image sequences for synchronization of cardiac phases

    Get PDF
    In the diagnosis and interventional treatment of coronary artery disease, the 3D+time reconstruction of the coronary artery on the basis of x-ray angiographic image sequences can provide dynamic structural information. The synchronization of cardiac phases in the sequences is essential for minimizing the influence of cardiorespiratory motion and realizing precise 3D+time reconstruction. Key points are initially extracted from the first image of a sequence. Matching grid points between consecutive images in the sequence are extracted by a multi-layer matching strategy. Then deep motion tracking (DMT) of key points is achieved by local deformation based on the neighboring grid points of key points. The local deformation is optimized by the Random sample consensus (RANSAC) algorithm. Then, a simple harmonic motion (SHM) model is utilized to distinguish cardiac motion from other motion sources (e.g. respiratory, patient movement, etc). Next, the signal which is composed of cardiac motions is filtered by a band-pass filter to reconstruct the cardiac phases. Finally, the synchronization of cardiac phases from different imaging angles is realized by a piece-wise linear transformation. The proposed method was evaluated using clinical x-ray angiographic image sequences from 13 patients. 85% matching points can be accurately computed by the DMT method. The mean peak temporal distance (MPTD) between the reconstructed cardiac phases and the electrocardiograph signal is 0.027 s. The correlation between the cardiac phases of the same patient is over 89%. Compared with three other state-of-the-art methods, the proposed method accurately reconstructs and synchronizes the cardiac phases from different sequences of the same patient. The proposed DMT method is robust and highly effective in synchronizing cardiac phases of angiographic image sequences captured from different imaging angles

    Rubber Impact on 3D Textile Composites

    Get PDF
    A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools

    Multicomponent fractional quantum Hall effect in graphene

    Full text link
    We report observation of the fractional quantum Hall effect (FQHE) in high mobility multi-terminal graphene devices, fabricated on a single crystal boron nitride substrate. We observe an unexpected hierarchy in the emergent FQHE states that may be explained by strongly interacting composite Fermions with full SU(4) symmetric underlying degrees of freedom. The FQHE gaps are measured from temperature dependent transport to be up 10 times larger than in any other semiconductor system. The remarkable strength and unusual hierarcy of the FQHE described here provides a unique opportunity to probe correlated behavior in the presence of expanded quantum degrees of freedom.Comment: 5 pages, 3 figure
    corecore