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Abstract—This paper examines the theory of kernel Fisher discriminant analysis (KFD) in a Hilbert space and develops a two-phase

KFD framework, i.e., kernel principal component analysis (KPCA) plus Fisher linear discriminant analysis (LDA). This framework

provides novel insights into the nature of KFD. Based on this framework, the authors propose a complete kernel Fisher discriminant

analysis (CKFD) algorithm. CKFD can be used to carry out discriminant analysis in “double discriminant subspaces.” The fact that, it

can make full use of two kinds of discriminant information, regular and irregular, makes CKFD a more powerful discriminator. The

proposed algorithm was tested and evaluated using the FERET face database and the CENPARMI handwritten numeral database.

The experimental results show that CKFD outperforms other KFD algorithms.

Index Terms—Kernel-based methods, subspace methods, principal component analysis (PCA), Fisher linear discriminant analysis

(LDA or FLD), feature extraction, machine learning, face recognition, handwritten digit recognition.
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1 INTRODUCTION

OVER the last few years, kernel-based learning machines,
e.g., support vector machines (SVMs) [1], kernel

principal component analysis (KPCA), and kernel Fisher
discriminant analysis (KFD), have aroused considerable
interest in the fields of pattern recognition and machine
learning [2]. KPCA was originally developed by Schölkopf
et al. in 1998 [3], while KFDwas first proposed byMika et al.
in 1999 [4], [5]. Subsequent research saw the development of
a series of KFD algorithms (see Baudat and Anouar [6], Roth
and Steinhage [7], Mika et al. [8], [9], [10], Yang [11], Lu et al.
[12], Xu et al. [13], Billings and Lee [14], Gestel et al. [15],
Cawley and Talbot [16], and Lawrence and Schölkopf [17]).
The KFD algorithms developed byMika et al. are formulated
for two classes, while those of Baudat and Anouar are
formulated for multiple classes. Because of its ability to
extract themost discriminatory nonlinear features [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], KFD has
been found to be very effective in many real-world
applications.

KFD, however, always encounters the ill-posed problem in
its real-world applications [10], [18]. A number of regulariza-
tion techniques that might alleviate this problem have been

suggested. Mika et al. [4], [10] used the technique of making
the inner product matrix nonsingular by adding a scalar
matrix. Baudat and Anouar [6] employed the QR decom-
position technique to avoid the singularity by removing the
zero eigenvalues. Yang [11] exploited the PCA plus LDA
techniqueadopted inFisherface [20] todealwith theproblem.
Unfortunately, all of these methods discard the discriminant
information contained in the null space of the within-class
covariance matrix, yet this discriminant information is very
effective for “small sample size” (SSS) problem [21], [22], [23],
[24], [25]. Lu et al. [12] have taken this issue into account and
presented kernel direct discriminant analysis (KDDA) by
generalization of the direct-LDA [23].

In real-world applications, particularly in image recogni-
tion, therearea lotofSSSproblems inobservationspace (input
space). In such problems, the number of training samples is
less than the dimension of feature vectors. For kernel-based
methods, due to the implicit high-dimensional nonlinear
mapping determined by kernel, many typical “large sample
size” problems in observation space, such as handwritten
digit recognition, are turned intoSSSproblems in feature space.
These problems can be called generated SSS problems. Since
SSSproblems are common, it is necessary to developnewand
more effective KFD algorithms to deal with them.

Fisher linear discriminant analysis has been well studied
and widely applied to SSS problems in recent years. Many
LDA algorithms have been proposed [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29]. The most famous method
is Fisherface [19], [20], which is based on a two-phase
framework: PCA plus LDA. The effectiveness of this
framework in image recognition has been broadly demon-
strated [19], [20], [26], [27], [28], [29]. Recently, the theoretical
foundation for this framework has been laid [24], [25].
Besides, many researchers have been dedicated to searching
for more effective discriminant subspaces [21], [22], [23],
[24], [25]. A significant result is the finding that there exists
crucial discriminative information in the null space of the
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within-class scatter matrix [21], [22], [23], [24], [25]. In this
paper, we call this kind of discriminative information
irregular discriminant information, in contrast with regular
discriminant information outside of the null space.

Kernel Fisher discriminant analysis would be likely to
benefit in twoways from the state-of-the-art LDA techniques.
One is the adoption of a more concise algorithm framework
and the other is that it would allow the use of irregular
discriminant information. This paper seeks to improve KFD
in these ways, first of all developing a new KFD framework,
KPCAplusLDA,basedona rigorous theoretical derivation in
Hilbert space. Then, a complete KFD algorithm (CKFD) is
proposed based on the framework. Unlike current KLD
algorithms, CKFD can take advantage of two kinds dis-
criminant information: regular and irregular. Finally, CKFD
was used in face recognition and handwritten numeral
recognition. The experimental results are encouraging.

The remainder of the paper is organized as follows: In
Section 2, the idea of KPCA and KFD is given. A two-phase
KFD framework, KPCA plus LDA, is developed in Section 3
and a complete KFD algorithm (CKFD) is proposed in
Section 4. In Section 5, the experiments are performed on
the FERET face database and CENPARMI handwritten
numeral database whereby the proposed algorithm is
evaluated and compared to other methods. Finally, a
conclusion and discussion are offered in Section 6.

2 OUTLINE OF KPCA AND KFD

For a given nonlinear mapping �, the input data space IRn

can be mapped into the feature space H:

� : IRn ! H
x 7! �ðxÞ:

ð1Þ

As a result, a pattern in the original input space IRn is mapped
into a potentially much higher dimensional feature vector in
the feature spaceH. Since the feature spaceH is possibly infinite-
dimensional and the orthogonality needs to be characterized
in sucha space, it is reasonable to viewH as aHilbert space. In
this paper,H is always regarded as a Hilbert space.

An initial motivation of KPCA (or KFD) is to perform
PCA (or LDA) in the feature space H. However, it is difficult
to do so directly because it is computationally very
intensive to compute the dot products in a high-dimen-
sional feature space. Fortunately, kernel techniques can be
introduced to avoid this difficulty. The algorithm can be
actually implemented in the input space by virtue of kernel
tricks. The explicit mapping process is not required at all.
Now, let us describe KPCA as follows.

Given a set of M training samples x1; x2; . . . ;xM in IRn,
the covariance operator on the feature space H can be
constructed by

S�
t ¼ 1

M

XM

j¼1

�ðxjÞ �m�
0

� �
�ðxjÞ �m�

0

� �T
; ð2Þ

where m�
0 ¼ 1

M

PM
j¼1 �ðxjÞ. In a finite-dimensional Hilbert

space, this operator is generally called covariance matrix.
The covariance operator satisfies the following properties:

Lemma 1. S�
t is a

1. bounded operator,
2. compact operator,

3. positive operator, and
4. self-adjoint (symmetric) operator on Hilbert space H.

The proof is given in Appendix A.
Since every eigenvalue of a positive operator is nonnega-

tive in a Hilbert space [48], from Lemma 1, it follows that all
nonzero eigenvalues of S�

t are positive. It is these positive
eigenvalues that are of interest to us. Schölkopf et al. [3] have
suggested the following way to find them.

It is easy to show that every eigenvector of S�
t , �, can be

linearly expanded by

� ¼
XM

i¼1

ai�ðxiÞ: ð3Þ

To obtain the expansion coefficients, let us denote Q ¼
�ðx1Þ; . . . ;�ðxMÞ½ � and form an M �M Gram matrix
~RR ¼ QTQ, whose elements can be determined by virtue of
kernel tricks:

~RRij ¼ �ðxiÞT�ðxjÞ ¼ �ðxiÞ � �ðxjÞ
� �

¼ kðxi;yjÞ: ð4Þ

Centralize ~RR by

R ¼ ~RR� 1M
~RR� ~RR 1M þ 1M

~RR 1M;

where the matrix 1M ¼ ð1=MÞM�M:
ð5Þ

Calculate the orthonormal eigenvectors �1; �2; . . . ; �m of R
corresponding to the m largest positive eigenvlaues, �1 �
�2 � . . . � �m. Theorthonormal eigenvectors�1; �2; . . . ; �m of
S�
t corresponding to the m largest positive eigenvlaues, �1;

�2; . . . ; �m, then are

�j ¼
1ffiffiffiffiffi
�j

p Q �j; j ¼ 1; . . . ;m: ð6Þ

After the projection of the mapped sample �ðxÞ onto the
eigenvector system �1; �2; . . . ; �m, we can obtain the KPCA-
transformed feature vector y ¼ ðy1; y2; . . . ; ymÞT by

y ¼ PT�ðxÞ; where P ¼ ð�1; �2; . . . ; �mÞ: ð7Þ

Specifically, the jth KPCA feature (component) yj is
obtained by

yj ¼ �T
j
�ðxÞ ¼ 1ffiffiffiffiffi

�j

p �Tj Q
T�ðxÞ

¼ 1ffiffiffiffiffi
�j

p �Tj kðx1;xÞ; kðx2;xÞ; . . . ;kðxM;xÞ½ �; j ¼ 1; . . . ;m:

ð8Þ

In the formulation of KFD, a similar technique is adopted
again. That is, expand the Fisher discriminant vector using
(3) and then formulate the problem in a space spanned by all
mapped training samples. For more details, please refer to
[4], [6], [11].

3 A NEW KFD ALGORITHM FRAMEWORK: KPCA
PLUS LDA

In this section,wewill build a rigorous theoretical framework
for kernel Fisher discriminant analysis. This framework is
important because it provides a solid theoretical foundation
for our two-phased KFD algorithm that will be presented in
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Section 4. That is, the presented two-phasedKFDalgorithm is
not empirically-based but theoretically-based.

To provide more theoretical insights into KFD, we would
like to examine the problems in a whole Hilbert space rather
than in the space spanned by training samples. Here, an
infinite-dimensional Hilbert space is preferred because any
proposition that holds in an infinite-dimensional Hilbert
space will hold in a finite-dimensional Hilbert space (but, the
reverse might be not true). So, in this section, we will discuss
the problems in an infinite-dimensional Hilbert spaceH.

3.1 Fundamentals

Suppose there are c known pattern classes. The between-
class scatter operator S�

b and the within-class scatter
operator S�

w in the feature space H are defined below:

S�
b ¼ 1

M

Xc

i¼1

li m�
i �m�

0

� �
m�

i �m�
0

� �T
; ð9Þ

S�
w ¼ 1

M

Xc

i¼1

Xli

j¼1

�ðxijÞ �m�
i

� �
�ðxijÞ �m�

i

� �T
; ð10Þ

where xij denotes the jth training sample in class i, li is the
number of training samples in class i, m�

i is the mean of the
mapped training samples in class i, m�

0 is the mean across
all mapped training samples.

From the above definitions, we have S�
t ¼ S�

b þ S�
w.

Following along with the proof of Lemma 1, it is easy to
prove that the two operators satisfy the following properties:

Lemma 2. S�
b and S�

w are both

1. bounded operators,
2. compact operators,
3. self-adjoint (symmetric) operators, and
4. positive operators on Hilbert space H.

Since S�
b is a self-adjoint (symmetric) operator in Hilbert

space H, the inner product between ’ and S�
b ’ satisfies

’;S�
b ’

� �
¼ S�

b ’; ’
� �

. So, we canwrite it as ’;S�
b ’

� �
¼�’TS�

b ’.

Note that, if S�
b is not self-adjoint, this denotation is mean-

ingless. Since S�
b is also a positive operator, we have ’TS�

b ’

� 0. Similarly, we have ’;S�
w’

� �
¼ S�

w’; ’
� �

¼�’TS�
w’ � 0.

Thus, in Hilbert spaceH, the Fisher criterion function can be

defined by

J�ð’Þ ¼ ’TS�
b ’

’TS�
w’

; ’ 6¼ 0: ð11Þ

If the within-class scatter operator S�
w is invertible,

’TS�
w’ > 0 always holds for every nonzero vector ’. In

such a case, the Fisher criterion can be directly employed to
extract a set of optimal discriminant vectors (projection
axes) using the standard LDA algorithm [35]. Its physical
meaning is that, after the projection of samples onto these
axes, the ratio of the between-class scatter to the within-
class scatter is maximized.

However, in a high-dimensional (even infinite-dimen-
sional) feature space H, it is almost impossible to make
S�
w invertible because of the limited amount of training

samples in real-world applications. That is, there always
exist vectors satisfying ’TS�

w’ ¼ 0 (actually, these vec-
tors are from the null space of S�

w). These vectors turn
out to be very effective if they satisfy ’TS�

b ’ > 0 at the
same time [22], [24], [25]. This is because the positive

between-class scatter makes the data become well
separable when the within-class scatter is zero. In such
a case, the Fisher criterion degenerates into the
following between-class scatter criterion:

J�
b ð’Þ ¼ ’TS�

b ’; ðjj’jj ¼ 1Þ: ð12Þ

As a special case of the Fisher criterion, the criterion given in
(12) is very intuitive since it is reasonable to use the between-
class scatter to measure the discriminatory ability of a
projection axis when the within-class scatter is zero [22], [24].

In thispaper,wewilluse thebetween-class scatter criterion
defined in (12) to derive the irregular discriminant vectors from
nullðS�

wÞ (i.e., the null space of S�
w), while using the standard

Fisher criterion defined in (11) to derive the regular discrimi-
nant vectors from the complementary setH� nullðS�

wÞ.

3.2 Strategy for Finding Fisher Optimal
Discriminant Vectors in Feature Space

Now, a problem is how to find the two kinds of Fisher
optimal discriminant vectors in feature space H. Since H is
very large (high or infinite-dimensional), it is computation-
ally too intensive or even infeasible to calculate the optimal
discriminant vectors directly. To avoid this difficulty, the
present KFD algorithms [4], [6], [7] all formulate the
problem in the space spanned by the mapped training
samples. The technique is feasible when the irregular case is
disregarded, but the problem becomes more complicated
when the irregular discriminant information is taken into
account since the irregular discriminant vectors exist in the
null space of S�

w. Because the null space of S�
w is possibly

infinite-dimensional, the existing techniques for dealing
with the singularity of LDA [22], [24] are inapplicable since
they are all limited to a finite-dimensional space in theory.

In this section, wewill examine the problem in an infinite-
dimensional Hilbert space and try to find a way to solve it.
Our strategy is to reduce the feasible solution space (search
space)where two kinds of discriminant vectorsmight hide. It
should be stressed thatwewould not like to lose any effective
discriminant information in the process of space reduction.
To this end, some theory should be developed first.

Theorem 1 (Hilbert-Schmidt Theorem [49]). Let A be a
compact and self-adjoint operator on Hilbert spaceH. Then, its
eigenvector system forms an orthonormal basis for H.

Since S�
t is compact and self-adjoint, it follows from

Theorem 1 that its eigenvector system f�ig forms an
orthonormal basis forH. Suppose �1; . . . ; �m are eigenvectors
corresponding to positive eigenvalues of S�

t , where
m ¼ rankðS�

t Þ ¼ rankðRÞ. Generally, m ¼ M � 1, where M
is the number of training samples. Let us define the subspace
�t ¼ span f�1; �2; . . . ; �mg. Suppose its orthogonal comple-
mentary space isdenotedby�?

t .Actually,�?
t is thenull space

of S�
t . Since �t, due to its finite dimensionality, is a closed

subspace ofH, from the Projection theorem [50], we have

Corollary 1. H ¼ �t ��?
t . That is, for an arbitrary vector ’ 2

H; ’ can be uniquely represented in the form ’ ¼ �þ � with
� 2 �t and � 2 �?

t .

Now, let us define a mapping L : H ! �t by

’ ¼ �þ � ! �; ð13Þ

where � is called the orthogonal projection of ’ onto �t. It is
easy to verify that L is a linear operator from H onto its
subspace �t.
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Theorem 2. Under the mapping L : H ! �t determined by
’ ¼ �þ � ! �, the Fisher criterion satisfies the following
properties:

J�
b ð’Þ ¼ J�

b ð�Þ and J�ð’Þ ¼ J�ð�Þ: ð14Þ

The proof is given in Appendix B.
According to Theorem 2, we can conclude that both

kinds of discriminant vectors can be derived from �t

without any loss of effective discriminatory information
with respect to the Fisher criterion. Since the new search
space �t is finite-dimensional and much smaller (less
dimensional) than nullðS�

wÞ and H� nullðS�
wÞ, it is feasible

to derive discriminant vectors from it.

3.3 Idea of Calculating Fisher Optimal Discriminant
Vectors

In this section, we will offer our idea of calculating Fisher

optimal discriminant vectors in the reduced search space�t.

Since the dimension of �t is m, according to functional

analysis theory [47], �t is isomorphic to m-dimensional

Euclidean space IRm Thecorresponding isomorphicmapping is

’ ¼ P�; where P ¼ ð�1; �2; . . . ; �mÞ; � 2 IRm; ð15Þ

which is a one-to-one mapping from IRm onto �t.
Under the isomorphic mapping ’ ¼ P�, the criterion

functions J�ð’Þ and J�
b ð’Þ in feature space are, respec-

tively, converted into

J� ’ð Þ ¼ �TðPTS�
b PÞ�

�TðPTS�
wPÞ�

and J�
b ’ð Þ ¼ �TðPTS�

b PÞ�: ð16Þ

Now, based on (16), let us define two functions:

Jð�Þ¼ �TSb�

�TSw�
; ð� 6¼ 0Þ and Jbð�Þ ¼ �TSb�; ðjj�jj¼1Þ; ð17Þ

where Sb ¼ PTS�
b P and Sw ¼ PTS�

wP.
It is easy to show that Sb and Sw are both

m�m semipositive definite matrices. This means that

Jð�Þ is a generalized Rayleigh quotient [34] and Jbð�Þ is

a Rayleigh quotient in the isomorphic space IRm. Note

that Jbð�Þ is viewed as a Rayleigh quotient because the

formula �TSb � ðjj�jj ¼ 1) is equivalent to �TSb�
�T�

[34].

Under the isomorphic mapping mentioned above, the
stationary points (optimal solutions) of the Fisher criterion
have the following intuitive property:

Theorem 3. Let’ ¼P � be an isomorphic mapping from IRm onto
�t. Then, ’� ¼ P� � is the stationary point of J�ð’Þ ðJ�

b ð’ÞÞ
if and only if � � is the stationary point of Jð�Þ ðJbð�ÞÞ.
From Theorem 3, it is easy to draw the following

conclusion:

Corollary 2. If �1; . . . ; �d is a set of stationary points of the
function Jð�ÞðJbð�ÞÞ, then, ’1 ¼ P�1; . . . ; ’d ¼ P�d is a set
of regular (irregular) optimal discriminant vectors with
respect to the Fisher criterion J�ð’Þ ðJ�

b ð’ÞÞ.
Now, the problem of calculating the optimal discriminant

vectors in subspace �t is transformed into the extremum
problem of the (generalized) Rayleigh quotient in the
isomorphic space IRm.

3.4 A Concise KFD Framework: KPCA Plus LDA

The obtained optimal discriminant vectors are used for
feature extraction in feature space. Given a sample x and its
mapped image �ðxÞ, we can obtain the discriminant feature
vector z by the following transformation:

z ¼ WT�ðxÞ; ð18Þ

where

WT ¼ ð’1; ’2; . . . ; ’dÞT ¼ ðP�1;P�2; . . . ;P�d ÞT

¼ ð�1; �2; . . . ; �d ÞTPT:

The transformation in (18) can be decomposed into two
transformations:

y ¼ PT�ðxÞ; where P ¼ ð�1; �2; . . . ; �mÞ; ð19Þ

and

z ¼ GTy; where G ¼ ð�1; �2; . . . ; �d Þ: ð20Þ

Since�1; �2; . . . ; �m areeigenvectorsofS�
t correspondingto

positive eigenvalues, the transformation in (19) is exactly
KPCA; see (7) and (8). This transformation transforms the
input space IRn into space IRm.

Now, let us view the issues in the KPCA-transformed
space IRm. Looking back at (17) and considering the two
matrices Sb and Sw, it is easy to show that they are between-
class and within-class scatter matrices in IRm. In fact, we can
construct them directly by

Sb ¼
1

M

Xc

i¼1

li mi �m0ð Þ mi �m0ð ÞT; ð21Þ

Sw ¼ 1

M

Xc

i¼1

Xli

j¼1

yij �mi

� �
yij �mi

� �T
; ð22Þ

where yij denotes the jth training sample in class i, li is the
number of training samples in class i, mi is the mean of the
training samples in class i, m0 the mean across all training
samples.

Since Sb and Sw are between-class andwithin-class scatter
matrices in IRm, the functions Jð�Þ and Jbð�Þ can be viewed as
Fisher criterions and, their stationary points �1; . . . ; �d are the
associated Fisher optimal discriminant vectors. Correspond-
ingly, the transformation in (20) is the Fisher linear
discriminant transformation (LDA) in the KPCA-trans-
formed space IRm.

Up to now, the essence of KFD has been revealed. That is,
KPCAis first used to reduce (or increase) thedimensionof the
input space tom, wherem is the rank ofS�

t (i.e., the rank of the
centralized Gram matrix R). Next, LDA is used for further
feature extraction in the KPCA-transformed space IRm.

In summary, a newKFD framework, i.e., KPCAplus LDA,
is developed in this section. This framework offers us a new
insight into the nature of kernel Fisher discriminant analysis.

4 COMPLETE KFD ALGORITHM

In this section, we will develop a complete KFD algorithm
based on the two-phase KFD framework. Two kinds of
discriminant information, regular and irregular, will be
derived and fused for classification tasks.
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4.1 Extraction of Two Kinds of Discriminant
Features

Our task is to explore how to perform LDA in the KPCA-
transformed space IRm.After all, the standardLDAalgorithm
[35] remains inapplicable since thewithin-class scattermatrix
Sw is still singular in IRm. Wewould rather take advantage of
this singularity to extract more discriminant information than
avoid it by means of the previous regularization techniques
[4], [6], [11]. Our strategy is to split the space IRm into two
subspaces: the null space and the range space of Sw. We then
use the Fisher criterion to derive the regular discriminant
vectors from the range space and use the between-class
scatter criterion to derive the irregular discriminant vectors
from the null space.

Suppose �1; . . . ; �m are the orthonormal eigenvectors of
Sw and assume that the first q ones corresponde to nonzero
eigenvalues, where q ¼ rank ðSwÞ. Let us define a subspace
�w ¼ spanf�qþ1; . . . ; �mg. Its orthogonal complementary
space is �?

w ¼ spanf�1; . . . ; �qg.
Actually, �w is the null space and �?

w is the range space
of Sw and IRm ¼ �w ��?

w . The dimension of the subspace
�?

w is p. Generally, q ¼ M � c ¼ m� cþ 1. The dimension
of the subspace �w is p ¼ m� q. Generally, p ¼ c� 1.

Lemma 3. For every nonzero vector � 2 �w, the inequality
�TSb� > 0 always holds.

The proof is given in Appendix C.
Lemma 3 tells us there indeed exists irregular discrimi-

nant information in the null space of Sw;�w, since the
within-class scatter is zero while the between-class scatter is
always positive. Thus, the optimal irregular discriminant
vectors must be derived from this space. On the other hand,
since every nonzero vector � 2 �?

w satisfies �TSw� > 0, it is
feasible to derive the optimal regular discriminant vectors
from �?

w using the standard Fisher criterion.
The idea of isomorphic mapping discussed in Section 3.3

can still be used for calculations of the optimal regular and
irregular discriminant vectors.

Let us first consider the calculation of the optimal regular
discriminant vectors in �?

w . Since the dimension of �?
w is q,

�?
w is isomorphic to Euclidean space IRq and the corre-

sponding isomorphic mapping is

� ¼ P1�; where P1 ¼ ð�1; . . . ; �qÞ: ð23Þ

Under this mapping, the Fisher criterion Jð�Þ in (17) is
converted into

~JJð�Þ ¼ �T~SSb�

�T~SSw�
; ð� 6¼ 0Þ; ð24Þ

where ~SSb ¼ PT
1 SbP1 and ~SSw ¼ PT

1 SwP1. It is easy to verify
that ~SSb is semipositive definite and ~SSw is positive definite
(must be invertible) in IRq. Thus, ~JJð�Þ is a standard general-
ized Rayleigh quotient. Its stationary points u1; . . . ;ud ðd �
c� 1Þ are actually the generalized eigenvectors of the
generalized eigenequation ~SSb� ¼ �~SSw� corresponding to the
d largest positive eigenvalues [34]. It is easy to calculate them
using the standard LDA algorithm [33], [35]. After working
out u1; . . . ;ud, we can obtain ~��j ¼ P1uj ðj ¼ 1; . . . ; dÞ using
(23). From the property of isomorphic mapping, we know
~��1; . . . ; ~��d are the optimal regular discriminant vectors with
respect to Jð�Þ.

In a similar way, we can calculate the optimal irregular
discriminant vectors within �w. �w is isomorphic to
Euclidean space IRp and the corresponding isomorphic
mapping is

� ¼ P2�; where P2 ¼ ð�qþ1; . . . ; �mÞ: ð25Þ

Under this mapping, the criterion Jbð�Þ in (17) is converted

into

ĴJbð�Þ ¼ �TŜSb�; ðjj�jj ¼ 1Þ; ð26Þ

where ŜSb ¼ PT
2 SbP2. It is easy to verify that ŜSb is positive

definite in IRp. The stationary points v1; . . . ;vd ðd � c� 1Þ of
ĴJbð�Þ are actually the orthonormal eigenvectors of ŜSb

corresponding to d largest eigenvalues. After working out
v1; . . . ;vd, we can obtain �̂�j ¼ P2vj ðj ¼ 1; . . . ; dÞ using (25).
From the property of isomorphic mapping, we know
�̂�1; . . . ; �̂�d are the optimal irregular discriminant vectors with
respect to Jbð�Þ.

Based on the derived optimal discriminant vectors, the
linear discriminant transformation in (20) can be performed
in IRm. Specifically, after the projection of the sample y onto
the regular discriminant vectors ~��1; . . . ; ~��d, we can obtain the
regular discriminant feature vector:

z1 ¼ ð~��1; . . . ; ~��dÞTy ¼ UTPT
1 y; ð27Þ

where U ¼ ðu1; . . . ;udÞ, P1 ¼ ð�1; . . . ; �qÞ.
After the projection of the sample y onto the irregular

discriminant vectors �̂�1; . . . ; �̂�d, we can obtain the irregular
discriminant feature vector:

z2 ¼ ð�̂�1; . . . ; �̂�dÞTy ¼ VTPT
2 y; ð28Þ

where V ¼ ðv1; . . . ;vdÞ, P2 ¼ ð�qþ1; . . . ; �mÞ.

4.2 Fusion of Two Kinds of Discriminant Features
for Classification

Since, for any given sample, we can obtain two d-dimensional
discriminant feature vectors, it is possible to fuse them in the
decision level. Here, we suggest a simple fusion strategy
based on a summed normalized-distance.

Suppose the distance between two samples zi and zj is
given by

gðzi; zjÞ ¼ jjzi � zjjj; ð29Þ

where jj � jj is the notation of norm. The norm determines
what measure is used. For example, the Euclidean norm
jj � jj2 defines the usual Euclidean distance. For simplicity,
the Euclidean measure is adopted in this paper.

Let us denote a pattern z ¼ ½z1; z2�, where z1; z2 are
regular and irregular discriminant feature vectors of the
same pattern. The summed normalized-distance between
sample z and the training sample zi ¼ ½z1i ; z2i � ði ¼ 1; . . . ;MÞ
is defined by

�ggðz; ziÞ ¼ 	
jjz1 � z1i jj

PM

j¼1

jjz1 � z1j jj
þ jjz2 � z2i jj

PM

j¼1

jjz2 � z2j jj
; ð30Þ

where 	 is the fusion coefficient. This coefficient determines
the weight of regular discriminant information in the
decision level.
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When a nearest neighbor classifier is used, if a sample z
satisfies �ggðz; zjÞ ¼ mini�ggðz; ziÞ and zj belongs to class k, then
z belongs to class k. When a minimum distance classifier is
used, the mean vector 
i ¼ ½
1

i ; 

2
i � of class i is viewed as a

prototype of samples in such a class. If a sample z satisfies
�ggðz; 
kÞ ¼ mini�ggðz; 
iÞ, then z belongs to class k.

4.3 Complete KFD Algorithm

In summary of the discussion so far, the complete KFD
algorithm is given below:

CKFD Algorithm

Step 1. Use KPCA to transform the input space IRn into an
m-dimensional space IRm, where m ¼ rankðRÞ;R is the
centralized Gram matrix. Pattern x in IRn is transformed
to be KPCA-based feature vector y in IRm.

Step 2. In IRm, construct the between-class and within-class
scatter matrices Sb and Sw. Calculate Sw’s orthonormal
eigenvectors, �1; . . . ; �m, assuming the first q ðq¼
rankðSwÞÞ ones are corresponding to positive eigenvalues.

Step 3. Extract the regular discriminant features: Let
P1 ¼ ð�1; . . . ; �qÞ. Define ~SSb ¼ PT

1 SbP1 and ~SSw ¼
PT

1 SwP1 and calculate the generalized eigenvectors
u1; . . . ;ud ðd � c� 1Þ of ~SSb� ¼ �~SSw� corresponding to
the d largest positive eigenvalues using the algo-
rithm in [33], [35]. Let U ¼ ðu1; . . . ;udÞ. The regular
discriminant feature vector is z1 ¼ UTPT

1 y.

Step 4. Extract the irregular discriminant features: Let
P2 ¼ ð�qþ1; . . . ; �mÞ. Define ŜSb ¼ PT

2 SbP2 and calculate
ŜSb’s orthonormal eigenvectorsv1; . . . ;vd ðd � c� 1Þ corre-
sponding to the d largest eigenvalues. LetV¼ ðv1; . . . ;vdÞ.
The irregular discriminant feature vector is z2 ¼ VTPT

2 y.

Step 5. Fuse the regular and irregular discriminant features
using summed normalized-distance for classification.

Concerning the implementation of the CKFD algorithm, a
remark should be made. For numerical robustness, in Step 2
of the CKFD algorithm, q could be selected as a number that
is properly less than the real rank of Sw in practical
applications. In this paper, we choose q as the number of
eigenvalues that are less than �max

2;000 , where �max is themaximal
eigenvalue of Sw.

4.4 Relationship to Other KFD (or LDA) Algorithms

In this section, we will review some other KFD (LDA)
methods and explicitly distinguish them from the proposed
CKFD. Let us begin with the linear discriminant analysis
methods. Liu et al. [21] first claimed that there exist two kinds
of discriminant information for LDA in small sample size
cases, irregular discriminant information (within the null
space of within-class scatter matrix) and regular discriminant
information (beyond the null space). Chen et al. [22]
emphasized the irregular information and proposed a more
effective way to extract it, but overlooked the regular
information. Yu and Yang [23] took two kinds of discrimina-
tory information into account and suggested extracting them
within the range space of the between-class scatter matrix.
Since thedimensionof the range space isup to c� 1, Yuet al.’s
algorithm (DLDA) is computationally more efficient for SSS
problems in that the computational complexity is reduced to
be Oðc3Þ.

DLDA, however, is suboptimal in theory. Although
there is no discriminatory information within the null space

of the between-class scatter matrix, no theory (like Theorem 2)
can guarantee that all discriminatory information must
exist in the range space because there is a large space
beyond the null and the range space which may contain
crucial discriminant information; see the shadow area in
Fig. 1. For two-class problems (such as gender recognition),
the weakness of DLDA becomes more noticeable. The range
space is only one-dimensional and spanned by the
difference of the two class mean vectors. This subspace is
too small to contain enough discriminant information.
Actually, in such a case, the resulting discriminant vector
of DLDA is the difference vector itself, which is not optimal
with respect to the Fisher criterion, let alone the ability to
extract two kinds of discriminant information.

Lu et al. [12] generalized DLDA using the idea of kernels
and presented kernel direct discriminant analysis (KDDA).
KDDA was demonstrated effective for face recognition, but,
as a nonlinear version of DLDA, KDDA unavoidably suffers
the weakness of DLDA. On the other hand, unlike DLDA,
which can significantly reduce computational complexity of
LDA (as discussed above), KDDA has the same computa-
tional complexity, i.e., OðM3Þ, as other KFD algorithms [4],
[5], [6], [7], [8], [9], [10], [11] because KDDA still needs to
calculate the eigenvectors of an M �M Gram matrix.

Like Liu et al.’s [21] method, our previous LDA algorithm
[24] can obtain more than c� 1 features, that is, all
c� 1 irregular discriminant features plus some regular ones.
This algorithm turned out to bemore effective thanChen and
Yu’s methods, which can extract at most c� 1 features. In
addition, our LDA algorithm [24] is more powerful and
simpler thanLiu et al.’s [21]method [52]. The algorithm in the
literature [32] can be viewed as a nonlinear generalization of
that in [24]. However, the derivation of the algorithm is based
on an assumption that the feature space is assumed to be a
finite dimensional space. This assumption is no problem for
polynomial kernels, but is unsuitable for other kernels which
determine mappings that might lead to an infinite-dimen-
sional feature space.

Compared to our previous idea [32] and Lu et al.’s KDDA,
CKFD has two prominent advantages. One is in the theory
and other is in the algorithm itself. The theoretical derivation
of the algorithm does not need any assumption. The
developed theory in Hilbert space lays a solid foundation
for the algorithm. The derived discriminant information is
guaranteednot only optimal but also complete (lossless)with
respect to the Fisher criterion. The completeness of discrimi-
nant information enables CKFD to be used to perform
discriminant analysis in “double discriminant subspaces.”
In each subspace, the number of discriminant features can be
up to c� 1. This means 2ðc� 1Þ features can be obtained in
total. This is different from the KFD (or LDA) algorithms
discussed above and beyond [4], [5], [6], [7], [8], [9], [10], [11],
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Fig. 1. Illustration the subspaces of DLDA.



[12], [13], [14], [15], [16], [17], [22], [23], which can yield only
one discriminant subspace containing at most c� 1 discrimi-
nant features. What is more, CKFD provides a new mechan-
ism for decision fusion. This mechanismmakes it possible to
take advantage of the two kinds of discriminant information
and to determine their contribution to decision bymodifying
the fusion coefficient.

CKFD has a computational complexity ofOðM3Þ (M is the
number of training samples),which is the sameas the existing
KFD algorithms [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17]. The reason for this is that theKPCAphase
of CKFD is actually carried out in the space spanned by
M training samples, so its computational complexity still
depends on the operations of solving M �M sized eigenva-
lue problems [3], [10]. Despite this, compared to other KFD
algorithms, CKFD indeed requires additional computation
mainly owing to its space decomposition process performed
in the KPCA-transformed space. In such a space, all
eigenvectors of Sw should be calculated.

5 EXPERIMENTS

In this section, three experiments are designed to evaluate
the performance of the proposed algorithm. The first
experiment is on face recognition and the second one is
on handwritten digit recognition. Face recognition is
typically a small sample size problem, while handwritten
digit classification is a “large sample size” problem in
observation space. We will demonstrate that the proposed
CKFD algorithm is applicable to both of these kinds of
problems. In the third experiment, CKFD is applied to two-
class problems, i.e., the classification of digit-pairs. We will
show that CKFD is capable of exhibiting data in two-
dimensional space for two-class problems.

5.1 Experiment on Face Recognition Using the
FERET Database

The FERET face image database is a result of the FERET
program, which was sponsored by the US Department of
Defense through the DARPA Program [36], [37]. It has
become a standard database for testing and evaluating
state-of-the-art face recognition algorithms.

The proposed algorithm was tested on a subset of the
FERET database. This subset includes 1,400 images of

200 individuals (each individual has seven images). It is
composed of the images whose names are marked with two-
character strings: “ba,” “bj,” “bk,” “be,” “bf,” “bd,” and “bg”
[51]. This subset involves variations in facial expression,
illumination, and pose. In our experiment, the facial portion
of each original image was automatically cropped based on
the location of eyes and the cropped image was resized to
80� 80 pixels and preprocessed by histogram equalization.
Some example images of one person are shown in Fig. 2.

Three images of each subject are randomly chosen for
training, while the remaining four images are used for
testing. Thus, the training sample set size is 600 and the
testing sample set size is 800. In this way, we run the system
20 times and obtain 20 different training and testing sample
sets. The first 10 are used for model selection and the others
for performance evaluation.

Two popular kernels are involved in our tests. One is the
polynomial kernel kðx;yÞ ¼ ðx � yþ 1Þr and the other is the
Gaussian RBF kernel kðx;yÞ ¼ expð�jjx� yjj2=�Þ . Three
methods, namely, Kernel Eigenface [11], Kernel Fisherface
[11], and the proposed CKFD algorithm, are tested and
compared. In order to gain more insights into our algorithm,
two additional versions, 1) CKFD: regular, where only the
regulardiscriminant features are used, and 2)CKFD: irregular,
where only the irregular discriminant features are used, are
also evaluated. Two simple classifiers, a minimum distance
classifier (MD) and a nearest neighbor classifier (NN), are
employed in the experiments.

In the phase of model selection, our goal is to determine
proper kernel parameters (i.e., the order r of the polynomial
kernel and the width � of the Gaussian RBF kernel), the
dimension of the projection subspace for each method, and
the fusion coefficient 	 for CKFD. Since it is very difficult to
determine these parameters at the same time, a stepwise
selection strategy is more feasible and thus is adopted here
[12]. Specifically, we fix the dimension and the fusion
coefficient (only for CKFD) in advance and try to find the
optimal kernel parameter for a given kernel function. Then,
based on the chosen kernel parameters, the selection of the
subspace sizes is performed. Finally, the fusion coefficient of
CKFD isdeterminedwith respect to other chosenparameters.

To determine proper parameters for kernels, we use the
global-to-local search strategy [2]. After globally searching
over awide range of theparameter space,we find a candidate
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Fig. 2. Images of one person in the FERET database. (a) Original images. (b) Cropped images (after histogram equalization) corresponding

to images in (a).



interval where the optimal parameters might exist. Here, for

the polynomial kernel, the candidate order interval is from 1

to 7 and, for the Gaussian RBF kernel, the candidate width

interval is from 0.1 to 20. Then, we try to find the optimal

kernel parameterswithin these intervals. Figs. 3a and3c show

the recognition accuracy versus the variation of kernel

parameters corresponding to four methods with a fixed

dimension of 20 and 	 ¼ 1 for CKFD. From these figures, we

candetermine theproperkernel parameters. For example, the

order of polynomial kernel should be two for CKFD with

respect to a minimum distance classifier and the width of

Gaussian kernel should be three for CKFD with respect to a

nearest neighbor classifier.
By kernel parameter selection, we find that the nonlinear

kernels are really helpful for improving the performance of

CKFD. The results of CKFD with the linear kernel (i.e., the

first order polynomial kernel), second order polynomial

kernel, and Gaussian RBF kernel (� ¼ 3) are listed in Table 1.

From this table, it can be seen that CKFD with nonlinear

kernels achieves better results under two different classifiers.
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Fig. 3. Illustration of the recognition rates over the variation of kernel parameters, subspace dimensions and fusion coefficients in the model
selection stage. (a) Recognition rates versus the order of the polynomial kernel, using minimum distance classifiers. (b) Recognition rates versus
the subspace dimension, using the polynomial kernel and minimum distance classifiers. (c) Recognition rates versus the width of the Gaussian
kernel, using nearest neighbor classifiers, (d) Recognition rates versus the subspace dimension, using the Gaussian kernel and nearest neighbor
classifiers. (e) Recognition rates of CKFD versus the fusion coefficients.



Moreover, Figs. 3a and 3c also show that 1) two kinds of
discriminant features, regular and irregular, are both effective
for discrimination. But, the variation trends of their perfor-
mance versus the kernel parameters are different. When the
polynomial kernel is used, the regular discriminant informa-
tion degrades with the increase of orders (when the order is
over 2), whereas the irregular discriminant information
improves until the order ismore than six.When theGaussian
kernel is used, the regular discriminant information enhances
with the increase of widths, while the irregular discriminant
information degrades after the width is more than 1. 2) After
the fusion of two kinds of discriminant information, the
performance is improved irrespective of the variation in the
kernel parameters. This indicates that the regular and irregular
discriminant features are complimentary for achievingabetter
result. 3) CKFD (even “CKFD: regular” or “CKFD: irregular”)
consistently outperforms Kernel Fisherface no matter what
kernel is used.

After determining the kernel parameters, we set out to
select the dimension of discriminant subspace. Let us depict
the performance of each method over the variation of
dimensions and show them in Figs. 3b and 3d. From these
figures, we can choose the optimal subspace dimension for
each method with respect to different kernels and classifiers.
Besides, we find that CKFD irregular features seem more
effective than regular ones when the subspace size is small
(less than 16). Anyway, they both contribute to better results
by fusion and are more powerful than Kernel Fisherface, no
matter howmany features areused. Inorder to fuse twokinds
of discriminant information more effectively, in particular
when they have significant different performance,weneed to

choose the fusion coefficients. The variation of performance
ofCKFDversus fusioncoefficientswith respect to twokernels
and two classifiers is shown in Fig.3e. Obviously, the optimal
fusion coefficient 	 should be 1.4 for the polynomial kernel
with a minimum distance classifier and 0.8 for the Gaussian
kernel with a nearest neighbor classifier.

After model selection, we determine all parameters for
each method with respect to different kernels and classifiers
and list them in Table 2. With these parameters, all methods
are reevaluated using an other 10 sets of training and testing
samples. The average recognition rate and standard devia-
tion (std) across 10 tests are shown in Table 3. From Table 3,
we can see that the irregular discriminant features stand
comparison with the regular ones with respect to their
discriminatory power. Both kinds of discriminant features
contribute to a better classification performance by virtue of
fusion.All threeCKFDversions outperformKernel Eigenface
and Kernel Fisherface.

Is CKFD statistically significantly better than other
methods in terms of its recognition rate? To answer this
question, let us evaluate the experimental results in Table 3
using McNemar’s [39], [40], [41] significance test. McNe-
mar’s test is essentially a null hypothesis statistical test
based on a Bernoulli model. If the resulting p-value is below
the desired significance level (for example, 0.02), the null
hypothesis is rejected and the performance difference
between two algorithms is considered to be statistically
significant. By this test, we find that CKFD statistically
significantly outperforms Kernel Eigenface and Kernel
Fisherface at a significance level of p ¼ 1:036� 10�7.

In order to evaluate the computational efficiency of
algorithms, we also give the average total CPU time of each
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TABLE 1
Performance of CKFD (%) Using Different Kernels in the Model Selection Process

TABLE 2
Optimal Parameters Corresponding to Each Method with Respect to Two Different Kernels and Classifiers

(Note that the parameter set is arranged as [Degree (or Width), Subspace Dimension, Fusion Coefficient].)

TABLE 3
The Average Recognition Rates (%) of Kernel Eigenface, Kernel Fisherface, CKFD: Regular, CKFD: Irregular,

and CKFD across 10 Tests and Their Standard Deviations (std)



method involved. Table 4 shows that CKFD (regular,
irregular and fusion) algorithms are slightly slower than
Kernel Fisherface and Kernel Eigenface.

By far, we can conclude that both regular and irregular
discriminant features are effective for classification. They
might, however, perform differently with the variation of
kernel parameters, dimensions, and classifiers. If we fix
these factors and allow the training sample size to vary,
how about their performance? To address this issue, k
ðk ¼ 2; 3; 4; 5Þ images of each subject are randomly chosen
for training and the others for testing. For each k,
10 training sample sets and the corresponding testing
sample sets are generated. Then, we perform experiments
using these sample sets. Here, a third-order polynomial
kernel and Gaussian kernel with width � ¼ 3 are adopted.
The subspace dimension is fixed to be 20 and a minimum
distance classifier is employed. The performance of CKFD
(regular, irregular, and fusion) is depicted and shown in
Fig. 4a. The ratio of the performance of “CKFD: irregular”
to “CKFD: regular” is shown in Fig. 4b.

Fig. 4a indicates that the regular and irregular discrimi-
nant information both increases with the increase of
training sample sizes. The fusion strategy remains effective
irrespective of the variation in training sample sizes. Fig. 4b
indicates that the ratio of the performance of “CKFD:
irregular” to “CKFD: regular” is large when the training
sample size is small (equal to 2 here). That is, the smaller the

training sample size is, the more powerful the irregular
discriminant features are. When the training sample size
becomes larger (more than 2), the ratio curve levels off.

5.2 Experiment on Handwritten Digit Classification
Using CENPARMI Database

In this experiment, we use the Concordia University
CENPARMI handwritten numeral database [42], [44]. This
database contains 6,000 samples of 10 numeral classes (each
class has 600 samples). Here, our experiment is performed
based on 256-dimensional Gabor transformation features
[43], [44], which turned out to be effective for handwritten
digit classification.

Inourexperiments, 100samplesare randomlychosenfrom
each class for training, while the remaining 500 samples are
used for testing. Thus, the training sample set size is 1,000 and
the testing sample set size is 5,000.We run the system10 times
and obtain 10 different training and testing sample sets for
performance evaluation. Here, the polynomial kernel and
Gaussian RBF kernel are both involved. The standard LDA
[35], GDA [6], and three versions of CKFD (regular, irregular,
and fusion) are tested and evaluated. A minimum distance
classifier is employed for computational efficiency.

The model selection process is performed using the same
method described in Section 5.1. The optimal parameters
corresponding to each method are obtained and listed in
Table 5. Based on these parameters, GDA and three
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TABLE 4
The Average Total CPU Time (s) for Training and Testing Corresponding to Each Method under

a Minimum Distance Classifier (CPU: Pentium 2.4HHz, RAM: 1Gb)

Fig. 4. (a) The performance of CKFD (regular, irregular, and fusion) with the variation of training sample sizes. (b) The ratio of the performance of

“CKFD: irregular” to “CKFD: regular” with the variation of training sample sizes.

TABLE 5
The Optimal Parameters for Each Method

(Note that the parameter set is arranged as [Degree (or Width), Subspace Dimension, Fusion Coefficient].)



versions of CKFD are tested. The average recognition rates
across 10 tests and the standard deviations (std) are listed in

Table 6. The average total CPU time consumed by each
method is shown in Table 7.

From Table 6, it can be seen that 1) both kinds of

discriminant features (regular and irregular) are very

effective for classification. 2) After their fusion, the discrimi-

natory power is dramatically enhanced with the polynomial

kernel and slightly enhanced with the Gaussian RBF kernel.

3) CKFD performs better than GDA and LDA and the

performance difference between CKFD and GDA is statisti-

cally significantwhen polynomial kernel is used. Besides, the

standard deviation of CKFD is much smaller than that of

GDA. These conclusions are consistent with those in face

recognition experiments on the whole. Table 7 indicates that

CKFDversions (regular, irregular, and fusion) consumemore

CPU time than GDA for training and testing. This is because

CKFD needs additional computation for space decomposi-

tion in Step 2. In addition, all kernel-basedmethods aremuch

more time-consuming than linear method LDA.

5.3 Experiments on Two-Class Problems: An
Example of CKFD-Based Two-Dimensional
Exhibition

In this section, we will do some tests on two-class problems.

For convenience, the CENPARMI handwritten numeral

database isemployedagain.Wewillnotuseawholedatabase,

but draw the samples of somedigit-pairs for experiments this

time. For instance, all samples of “1” and “7” are taken out to

form a digit-pair subset. The algorithms are tested on this
subset andused to classify the two-classpatterns: “1”and“7”.

Some easily confused digit-pairs are first chosen, as listed
in the first column of Table 8. Then, LDA, KFD [4], KPCA [3],
and CKFD are tested on these digit-pairs subsets. For each
subset, the first 100 samplesper class areused for training and
the remaining 500 samples are for testing. Thus, the total
number of training samples is 200 while the total number of
testing samples is 1,000. For KFD [4], to overcome the
singularity, the inner product matrix N (induced by the
within-class scatter matrix) is added by a multiple of the
identity matrix, i.e., N
 ¼ Nþ 
 I. Here, the parameter 
 is
chosen as 
 ¼ 10�3. Since there are only 200 training samples,
the within-class scatter matrix of LDA is also singular. We
adopt the same technique as that in KFD to regularize it.

Note that, for two-class cases, LDA and KFD can get only
one discriminant axis, whereas CKFD can obtain two
discriminant axes (one is regular and the other is irregular).
After theprojectionof samples onto thediscriminant axes, the
resulting LDA and KFD features are one-dimensional while
CKFD features are two-dimensional. Although KPCA can
extract multidimensional features, for convenience of com-
parison in the followingdata visualization example, only two
principal components are used in our tests. The classification
results corresponding to each method with a second order
polynomial kernel and a minimum distance classifier are
listed in Table 8. Table 8 shows CKFD outperforms other
methods.

Now, taking digit-pair f1; 7g as an example, we plot the
scatter of 400 testing samples (200 ones per class) as they are
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TABLE 6
The Average Recognition Rates (%) of Each Method across 10 Tests

on the CENPARMI Database and the Standard Deviations (std)

TABLE 7
The Average Total CPU Time (s) for Training and Testing of Each Method

TABLE 8
Comparison of LDA, KFD [4], KPCA, and CKFD on Some Digit-Pairs Drawn from the CENPARMI Database



projected onto the discriminant space (or principal compo-
nent space), as shown in Fig. 5. For LDA andKFD, since there
is only onediscriminant axis, the projected samples scatter on
a line.Differently, CKFDenables the data to scatter on aplane
that is spanned by the regular and irregular discriminant axes.
It can obviously be seen from Fig. 5 that the data are more
separable in the two-dimensional CKFD space than in the
one-dimensional KFD or LDA space. Actually, this separ-
ability can be simply measured by the classification errors.
There are only six errors of CKFDwhile there are 20 errors of
KFD and 29 errors of LDA. This indicates that the dimen-
sional increase of discriminant space is really helpful for
discrimination. However, KPCA does not perform well,
although it can also exhibit the data in two-dimensional
mode. Fig. 5c shows the two-class patterns are badly
overlapped in the KPCA-based space. Therefore, we can
conclude that theKPCAprincipal component features arenot
very discriminatory for classification tasks.

6 CONCLUSION, DISCUSSION, AND FUTURE WORK

A new KFD framework—KPCA plus LDA—is developed in
this paper. Under this framework, a two-phase KFD
algorithm is presented. Actually, based on the developed
KFD framework, a series of existing KFD algorithms can be
reformulated in alternative ways. In other words, it is easy to

give the equivalent versions of the previous KFD algorithms.
Taking kernel Fisherface as an example, we can first use
KPCA to reduce the dimension to l (note that here only
l components are used; l is subject to c � l � M � c, whereM
is the number of training samples and c is the number of
classes) and then perform standard LDA in the KPCA-
transformed space. Similarly, we can construct alternative
versions for others. These versions make it easier to under-
stand and implement kernel Fisher discriminant, particularly
for the new investigator or programmer.

A complete KFD algorithm (CKFD) is proposed to
implement the KPCA plus LDA strategy. This algorithm
allows us to perform discriminant analysis in “double
discriminant subspaces”: regular and irregular. The pre-
vious KFD algorithms always emphasize the former and
neglect the latter. In fact, the irregular discriminant sub-
space contains important discriminative information which
is as powerful as the regular discriminant subspace. This
has been demonstrated by our experiments. It should be
emphasized that, for kernel-based discriminant analysis,
the two kinds of discriminant information (particularly the
irregular one) are widely existent, not limited to small
sample size problems like face recognition. Our experiment
on handwritten digit recognition shows that CKFD is
suitable for “large sample size” problems (in observation
space) as well. The underlying reason is that the implicit
nonlinear mapping determined by ”kernel” always turns
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Fig. 5. The scatter plots of two-class samples as they are projected onto LDA, KFD [4], KPCA (two principal components are used), and CKFD

spaces. (a) The scatter plot of LDA, where 29 samples are misclassified. (b) The scatter plot of KFD, where 20 samples are misclassified. (c) The

scatter plot of KPCA, where 174 samples are misclassified. (d) The scatter plot of CKFD, where six samples are misclassified.



large sample size problems in observation space into small
sample size ones in feature space. More interestingly, the two
discriminant subspaces of CKFD turn out to be mutually
complementary for discrimination despite the fact that each
of them can work well independently. The fusion of two
kinds of discriminant information can achieve better results.

Especially for small sample size problems, CKFD is
exactly in tune with the existing two-phase LDA algorithms
that are based on PCA plus LDA framework. Actually, if a
linear kernel, i.e., kðx;yÞ ¼ x � y, is adopted instead of
nonlinear kernels, CKFD would degenerate to be a PCA plus
LDA algorithm like that in [24]. Therefore, the existing two-
phase LDA (PCA plus LDA) algorithms can be viewed as a
special case of CKFD.

Finally, we have to point out that the computational
efficiency of CKFD is a problem deserving further investiga-
tion. Actually, all kernel-based methods, including KPCA
[3], GDA [6], and KFD [4], encounter the same problem. This
is because all kernel-based discriminant methods have to
solve an M �M sized eigenproblem (or generalized eigen-
problem). When the sample sizeM is fairly large, it becomes
very computationally intensive [10]. Several ways suggested
byMika et al. [10] and Burges and Schölkopf [45] can be used
to deal with this problem, but the optimal implementation
scheme (e.g., developing a more efficient numerical algo-
rithm for large scale eigenproblems) is still open.

APPENDIX A

THE PROOF OF LEMMA 1

Proof. For simplicity, let us denote T ¼ MS�
t and

gj ¼ �ðxjÞ �m�
0 . Then, T ¼

PM
j¼1 gjg

T
j .

1. For every f 2 H , we have Tf ¼
PM

j¼1 hgj; figj.
Since

jjTf jj �
XM

j¼1

jhgj; fij jjgjjj � jjfjj
XM

j¼1

jjgjjj2 ;

T is bounded and jjTjj �
PM

j¼1 jjgjjj2 .
2. Let us consider the range of the operator T :

RðTÞ ¼ fTf; f 2 Hg.
Since

Tf ¼
XM

j¼1

hgj; figj;RðTÞ ¼ Lðg1; . . . ; gMÞ;

which is the generated space by g1; . . . ; gM . So,
dim RðTÞ � M < 1, which implies that T is a
compact operator [47].

3. For every f 2 H, we have

hTf; fi ¼
XM

j¼1

hgj; fihgj; fi ¼
XM

j¼1

hgj; fi2 � 0:

Thus, T is a positive operator on Hilbert space H.
4. Since T is a positive operator, it must be self-

adjoint (symmetric) because its adjoint T� ¼ T
(see [48]).

Since S�
t has the same properties as T,

Lemma 1 is proven. tu

APPENDIX B

THE PROOF OF THEOREM 2

In order to verify Theorem 2, let us introduce two lemmas
first.

Lemma B1. ’TS�
t ’ ¼ 0 if and only if ’TS�

b ’ ¼ 0 and

’TS�
w’ ¼ 0.

Proof. Since S�
b and S�

w are both positive and S�
t ¼ S�

b þ S�
w,

it is easy to verify this. tu
Lemma B2 [47]. Suppose that A is a positive operator. Then,

xTAx ¼ 0 if and only if Ax ¼ 0.

Proof. IfAx ¼ 0, it is obvious thatxTAx¼0. So,weonlyneed
to prove that xTAx ¼ 0 ) Ax ¼ 0. Since A is a positive
operator, it must have a positive square root T [47], such
that A ¼ T2. Thus, hTx;Txi ¼ hAx; xi ¼ xTAx ¼ 0. So,
Tx ¼ 0, from which it follows thatAx ¼ TðTxÞ ¼ 0. tu

The Proof of Theorem 2. Since �?
t is the null space of S�

t ,
for every � 2 �?

t , we have �TS�
t � ¼ 0.

From Lemma B1, it follows that �TS�
b � ¼ 0. Since S�

b is
a positive operator according to Lemma 2, we have
S�
b � ¼ 0 by Lemma B2. Hence,

’TS�
b ’ ¼ �TS�

b �þ 2�TS�
b � þ �TS�

b � ¼ �TS�
b �:

Similarly, we have

’TS�
w’ ¼ �TS�

w�þ 2�TS�
w� þ �TS�

w� ¼ �TS�
w�:

So, J�
b ð’Þ ¼ J�

b ð�Þ and J�ð’Þ ¼ J�ð�Þ. tu

APPENDIX C

THE PROOF OF LEMMA 3

Proof. Since S�
t is a compact and positive operator from

Lemma 1, the total scatter matrix St in the KPCA-

transformation space IRm can be represented by

St¼PTS�
t P¼diagð�1; �2; . . . ; �mÞ, where �1; �2; . . . ; �m

are the positive eigenvalues of S�
t .

So, St is a positive definite matrix in IRm. This means

that, for every nonzero vector � 2 IRm, �TSt� > 0 always

holds.

Obviously, for every nonzero vector � 2 �w, �
TSw� ¼ 0

always holds.
Since St ¼ Sb þ Sw, for every nonzero vector � 2 �w,

we have �TSb� ¼ �TSt� � �TSw� > 0. tu
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