
Scheduling a batch processing machine
subject to precedence constraints, release dates and

identical processing times

T.C.E. Cheng1∗, J.J. Yuan1,2 and A.F. Yang1,2

1Department of Management, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong, People’s Republic of China

2Department of Mathematics, Zhengzhou University,

Zhengzhou, Henan 450052, People’s Republic of China

ABSTRACT

We consider the single machine parallel-batching scheduling problem with precedence
relations, release dates and identical processing times to minimize a regular objective
function. When the processing times are unit, we give an O(n2) time optimal algorithm.
When there are no precedence relations, we solve this problem by dynamic programming
in O(n3) time. When the precedence relations are “layerly complete”, we solve this
problem by a dynamic programming algorithm that runs in O(n7) time. For the total
weighted completion time minimization problem, we give an O(n2) time 3

2
-approximation

algorithm. For the makespan minimization problem, we give an O(n2) time optimal
algorithm and an expression of the minimum makespan.

Keywords: Scheduling, Batch processing, Precedence constraints, Release dates,
Identical processing times, Algorithms,.

1 Introduction and Problem Formulation

Let n jobs J1, J2, ..., Jn and a single machine that can handle batch jobs at the same time
be given. There are precedence relations ≺ between the jobs. Each job Jj has an integer

∗Corresponding author

1

This is the Pre-Published Version.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61005765?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

processing time pj and an integer release date rj. The jobs are processed in batches,
where a batch is a subset of jobs and we require that the batches form a partition of the
set of all jobs. The processing time of a batch is equal to the longest processing time of
all the jobs in the batch.

Suppose that a batch sequence (which indicates the processing order of a certain batch
partition of the jobs) is given and we will process the batched jobs according to this batch
sequence. We require that the starting time of a batch is at least the maximum release
date of the jobs in it, and this maximum value can be regarded as the release date of the
batch. If Ji and Jj are two jobs such that Ji ≺ Jj , we also require that Jj be processed
after the completion time of Ji; so Ji and Jj cannot be processed in the same batch. The
completion time of all the jobs in a batch is defined as the completion time of the batch.
Following [1] and [7], we call this model the parallel-batching scheduling problem and
denote it by

1|prec; p-batch; rj|f,
where f is the objective function, which is a function of the job completion times Cj

under a given schedule, to be minimized. In this paper we will suppose that the objective
function f is regular [1], i.e., f is nondecreasing in Cj.

For the problem 1|prec; p-batch; rj |f , a feasible schedule is given by a batch sequence

BS = (B1, B2, ..., BN)

such that, for any pair of jobs Ji and Jj with Ji ≺ Jj, if Ji ∈ Bx and Jj ∈ By, then x < y.
Since the objective function is regular, we suppose that all the jobs in the same batch start
simultaneously at the earliest possible starting time. Consequently, the starting time of
each batch is determined by the batch sequence. For each batch Bx, if the starting time
of Bx is sx, then the completion time of Bx is simply

sx + max
Jj∈Bx

pj.

The parallel-batching scheduling problem is one of the important modern scheduling
models that has received much attention in the literature. The fundamental model of
the parallel-batching scheduling problem was first introduced by Lee et al. in [8] with
the restriction that the number of jobs in each batch is bounded by a number b, which
is denoted by 1|p-batch; b < n|f . This bounded model is motivated by the burn-in
operations in semiconductor manufacturing [8]. For example, a batch of integrated circuits
(jobs) are put inside an oven of limited size to test for their thermal standing ability. The
circuits are heated inside the oven until all circuits are burned. The burn-in time of the
circuits (job processing times) may be different. When a circuit is burned, it has to wait
inside the oven until all circuits are burned. Therefore, the processing time of a batch of
circuits is the processing time of the longest job in the batch.

An extensive discussion of the unbounded version of the problem under study is pro-
vided in [2]. This unbounded model can be applied, for example, to situations where the

2

batch contents need to be hardened in a sufficiently large kiln and so the batch size is not
restricted [2].

Recent developments of this topic can be found in the book [1] and the web site [3].
In addition, [4], [6], [9] and [10] presented new complexity results on the parallel-batching
scheduling problem subject to release dates. We will only consider the unbounded version
of the parallel-batching scheduling problem.

For the problem 1|prec; pj = p; p-batch|f , it is implied in [1] that there is an O(n2)
time algorithm for every regular objective function. For the problem 1|prec; p-batch|f ,
Cheng et al. [5] recently showed that even the simplest problems 1|chains; p-batch|Cmax

and 1|chains; p-batch|∑Cj are strongly NP-hard.

We consider the problem 1|prec; pj = p; p-batch; rj |f . It is reported in [3] that the
complexity of the problem 1|prec; pj = 1; p-batch; rj |f is unknown even for such common
regular objective functions as makespan, Cmax = max{Cj}; maximum lateness, Lmax =
max{Cj −dj}; total completion time,

∑
Cj; and total tardiness,

∑
Tj , where dj is the due

date of Jj and Tj = max{0, Cj − dj}.
We show in this paper that the scheduling problem 1|prec; pj = 1; p-batch; rj |f can

be solved in O(n2) time, 1|pj = p; p-batch; rj |f can be solved in O(n3) time, and
1|complete-prec; pj = p; p-batch; rj |f can be solved in O(n7) time. We give an O(n2)
time 3

2
-approximation algorithm for the problem 1|prec; pj = p; p-batch; rj |

∑
wjCj . We

also show that the problem 1|prec; pj = p; p-batch; rj|Cmax can be solved in O(n
2) time.

Furthermore, we give an expression of the minimum makespan.

2 Release Date Modification

Let us consider the problem 1|prec; pj = p; p-batch; rj|f , where f is any regular objective
function. This problem can be solved by a simple algorithm.

We suppose that the job enumeration given here is topological, i.e., for any two jobs
Ji and Jj with Ji ≺ Jj , we must have i < j. According to Brucker [1], a topological
job enumeration can be obtained in O(n2) time by the standard “Algorithm Topological
Enumeration”.

If Ji and Jj are two jobs such that Ji ≺ Jj, then the starting time of the batch that
contains Jj must be at least ri + p in any feasible schedule. Modifying the release date of
each job Jj by setting

r′j := max{rj, ri + p},
we see that the value of the objective function will not change under any feasible schedule.
Hence, we can recursively modify the release dates of the jobs such that, for each pair of
jobs Ji and Jj, if Ji ≺ Jj, then r

′
i + p ≤ r′j . This procedure can be done in O(n

2) time by
the standard “Algorithm Modify rj” in Brucker [1].

An important observation is that, under the modified release dates, r′j ≥ r′i + p if

3

Ji ≺ Jj. Furthermore, in any feasible schedule, the starting time of the batch that contains
Jj is at least r

′
j . This greatly simplifies the description of the algorithms discussed in this

paper. Hence, we assume in the rest of this paper that the release dates have initially
been modified such that for each pair of jobs Ji and Jj , if Ji ≺ Jj, then ri + p ≤ rj.

Consider the special case where there is a certain integer e with 0 ≤ e ≤ p − 1 such
that, for each rj, there exists kj such that rj = e + kjp, 1 ≤ j ≤ n. Suppose we have k
distinct release dates r(1), r(2), ..., r(k) such that r(i) < r(i+1) for 1 ≤ i ≤ k − 1. By noting
that r(i) < r(i+1) implies that r(i) + p ≤ r(i+1), we can form a batch sequence

BS = (B1, B2, ..., Bk)

in O(n) time by setting

Bx = {Jj : rj = r(x)}, for 1 ≤ x ≤ k.

Clearly, BS = (B1, B2, ..., Bk) is a feasible schedule such that the starting time and the
completion time of each batch Bx are r

(x) and r(x) + p, respectively. Since any job Jj

starts at its release date (i.e., the earliest possible starting time) rj , the batch sequence
BS must be optimal for any regular objective function f .

Based on the above discussion, the problem 1|prec; pj = p; p-batch; rj = e+ kjp|f can
be solved by the following batching rule.

Algorithm 2.1 Batching Rule for Job System with rj = e+ kjp.

At each point, form the next first batch by including all available unbatched jobs that
have no unbatched predecessors.

When pj = 1 for all jobs Jj, e = 0, and so the above batching rule solves the problem
1|prec; pj = 1; p-batch; rj |f .

3 Job System under Identical Processing Times

Define
T = {rj + xp : 1 ≤ j ≤ n, 0 ≤ x ≤ n}.

It is clear that there must be an optimal schedule for 1|prec; pj = p; p-batch; rj|f such
that the starting time and the completion time of every batch belong to T . Hence, it
suffices to consider the schedule with batch starting times in T .

Given an instance of the problem 1|prec; pj = p; p-batch; rj |f , let J = {J1, J2, ..., Jn}.
We define layers of the jobs in the following way:

L1 = {Jj : Jj has no predecessors in J },

Li = {Jj : Jj has no predecessors in J \ (∪1≤j≤i−1Lj)}, 2 ≤ i ≤ n.

4

Li is called the i-th layer of the job system. Let m = max{i : Li is not empty}. Then
∪1≤i≤mLi = J and each layer Li consists of independent jobs. Clearly, the layers of jobs
can be obtained in O(n2) time.

If, for 1 ≤ i ≤ m − 1, each job in Li is a predecessor of every job in Li+1, the prece-
dence relation is said to be “layerly complete”. The corresponding problem is denoted by
1|complete-prec; pj = p; p-batch; rj |f .

3.1 Independent Job System

A special subproblem of 1|prec; pj = p; p-batch; rj |f is 1|pj = p; p-batch; rj |f , where the
jobs are independent (with no precedence constraints between jobs). We first consider
the problem

Pf(L, s, t) : 1|pj = p; p-batch; rj ; Jj ∈ L|f
under the restriction that the starting time of the first batch is at least s and the com-
pletion time of the last batch is at most t, where either f =

∑
Jj∈L fj or f = maxJj∈L fj .

Let OPTf (L, s, t) denote the optimal (minimum) objective value for Pf (L, s, t). We
take the convention that OPTf(L, s, t) = 0 if L = ∅, and OPTf(L, s, t) = +∞ if Pf(L, s, t)
has no feasible schedule. Let

R(L, s, t) = {s} ∪ {rj : Jj ∈ L, rj + p ≤ t}.

Then |R(L, s, t)| ≤ |L|. It is clear that there is an optimal schedule for Pf (L, s, t) such
that the starting time of the first batch belongs to R(L, s, t). Suppose that the starting
time of the first batch is r, and let

L(r) = {Ji ∈ L : rj ≤ r}.

Since f is regular, L(r) will form the first batch. Define g(L(r)) by

g(L(r)) =




∑
Jj∈L(r) fj(r + p), if f =

∑
fj ,

maxJj∈L(r) fj(r + p), if f = max fj .

Clearly, the computing of g(L(r)) needs at most O(|L|) time. For f = ∑
fj, we have the

following dynamic programming recursion

OPTf(L, s, t)

= minr∈R(L,s,t)

(
g(L(r)) + OPTf(L \ L(r), r + p, t)

)
.

For f = max fj, we have

OPTf (L, s, t)

= minr∈R(L,s,t)max
{
g(L(r)),OPTf(L \ L(r), r + p, t)

}
.

5

In the dynamic programming procedure, the lower bounds of the starting times of the job
subsets of L are chosen from

{s+ xp ∈ T : 1 ≤ x ≤ |L|} ∪ {rj + xP : Jj ∈ L, 1 ≤ x ≤ |Li|},
and we have O(|L|2) such choices. When a new lower bound r of the starting time is
established, the new job subset L\L(r) is uniquely formed. Each recursion runs in O(|L|)
time. Hence, when s and t are given, both dynamic programming recursions run in O(|L|3)
time to solve the problem Pf(L, s, t).

For the general problem 1|pj = p; p-batch; rj |f , the set of jobs is L = J . Since
OPTf = OPTf (J , 0, max

1≤j≤n
rj + np),

we conclude that the problem 1|pj = p; p-batch; rj |f can be solved in O(n3) time.

3.2 Layerly Complete Precedence Contrained Job System

Now we turn our attention to the problem 1|complete-prec; pj = p; p-batch; rj |f . Let
L1,L2, ...,Lm be the layers of jobs under ≺. Since each job in Li must complete its
processing before the starting of any job in Li+1, this enables us to use dynamic program-
ming to solve this problem. Let

L∗
i = Li ∪ Li+1 ∪ ... ∪ Lm, 1 ≤ i ≤ m.

For s ∈ T = {rj + xp : 1 ≤ j ≤ n, 1 ≤ x ≤ n}, we consider the problem
Pf(L∗

i , s) : 1|complete-prec; pj = p; p-batch; rj;Jj ∈ L∗
i |f

under the restriction that the starting time of the first batch is at least s. Let OPTf (L∗
i , s)

denote the optimal (minimum) objective value for Pf (L∗
i , s). We take the convention that

L∗
m+1 = ∅ and OPTf(∅, s) = 0. Let

R(i, s) = {s+ xp ∈ T : 1 ≤ x ≤ |Li|} ∪ {rj + xp : Jj ∈ Li, 1 ≤ x ≤ |Li|}.
Then, we have the dynamic programming recursions

OPTf(L∗
i , s) = min

t∈R(i,s)

(
OPTf(Li, s, t) + OPTf(L∗

i+1, t)
)

for f =
∑
fj , and

OPTf(L∗
i , s) = min

t∈R(i,s)
max

{
OPTf (Li, s, t),OPTf(L∗

i+1, t)
}

for f = max fj. Now we have m choices for i, O(n2) choices for s ∈ T and O(n2)
choices for t ∈ R(i, s). Before the recursion, computing all OPTf(Li, s, t) for all i, s
and t needs O(n4 ∑

1≤i≤m |Li|3) = O(n7) time. Hence, the complexity of each of the two
dynamic programming recursions is O(mn4 + n7) = O(n7). Since the optimal value of
the problem 1|complete-prec; pj = p; p-batch; rj |f is given by OPTf = OPTf(L∗

1, 0), we
conclude that the scheduling problem 1|complete-prec; pj = p; p-batch; rj|f can be solved
in O(n7) time.

6

3.3 An Approximation Algorithm

Although the complexity of 1|prec; pj = p; p-batch; rj|f remains open, we do not expect
a simple polynomial-time algorithm for this problem. In the following, we will give a
release date rounding polynomial-time approximation algorithm.

Denote each release date rj by

rj = ej + kjp, 0 ≤ ej ≤ p− 1 and kj = �rj

p
�.

Let x be an integer with 0 ≤ x ≤ p − 1. The release dates are rounded in the following
way:

r∗j (x) =



x+ kjp, if ej ≤ x,

x+ (kj + 1)p, if ej > x.

An important observation is that 0 ≤ r∗j (x)− rj ≤ p− 1, for 1 ≤ j ≤ n.

Lemma 3.3.1 If Ji ≺ Jj, then r
∗
i (x) + p ≤ r∗j (x).

Proof Since Ji ≺ Jj , we have ri+ p ≤ rj. For the reason that r
∗
i (x)− ri ≤ p− 1 and

0 ≤ r∗j (x)− rj, we deduce r
∗
i (x) + p ≤ r∗j (x) + p− 1, and thus r∗i (x) < r∗j (x). The result

follows by noting that r∗j (x)− r∗i (x) can be divided by p.

✷

Under the release dates r∗j (x), 1 ≤ j ≤ n, the problem 1|prec; pj = p; p-batch; r∗j (x)|f
can be solved by Algorithm 2.1 to obtain an optimal schedule π(x). This schedule π(x) is
clearly feasible for 1|prec; pj = p; p-batch; rj|f , and so can be used as an approximation
solution.

Since the starting time of each job Jj under π(x) is exactly r
∗
j (x), we have Cj(π(x)) =

r∗j (x) + p, 1 ≤ j ≤ n. So, the objective value is given by

F (x) = f(r∗1(x) + p, r∗2(x) + p, ..., r∗n(x) + p).

The following lemma shows that, to minimize F (x) for 0 ≤ x ≤ p − 1, we only need to
minimize F (ej) for 1 ≤ j ≤ n

Lemma 3.3.2 There is an integer j with 1 ≤ j ≤ n such that

F (ej) = min{F (x) : 0 ≤ x ≤ p− 1}.

Proof Suppose that 0 ≤ x∗ ≤ p− 1 such that F (x∗) = min{F (x) : 0 ≤ x ≤ p− 1}.
If x∗ �∈ {ej : 1 ≤ j ≤ n}, we define

e∗ =



max{ej : 1 ≤ j ≤ n}, if {ej : ej < x∗, 1 ≤ j ≤ n} = ∅,
max{ej : ej < x∗, 1 ≤ j ≤ n}, otherwise.

7

It can be verified that r∗j (e
∗) < r∗j (x

∗), and so, Cj(π(e
∗) < Cj(π(x

∗)), 1 ≤ j ≤ n. Since
f(C1, C2, ..., Cn) is regular, we must have F (e

∗) ≤ F (x∗). The result follows.

✷

Now, our release date rounding algorithm can be summarized as follows.

Algorithm 3.3.3 Release Date Rounding.

(1) Pick e∗ ∈ {ej : 1 ≤ j ≤ n} such that

F (e∗) = min{F (ej) : 1 ≤ j ≤ n}.

(2) Apply Algorithm 2.1 to the scheduling problem 1|prec; pj = p; p-batch; r∗j (e
∗)|f

to obtain a schedule π(e∗).

Algorithm 3.3.3 is polynomial and has good performance for f = Lmax and f =∑
wjCj . For f = Lmax, the absolute error F (e

∗)−OPTf can be bounded from above by
p − 1, since r∗j (e

∗) ≤ rj + (p − 1) for 1 ≤ j ≤ n. In the following, we will estimate an
upper bound of the performance ratio of Algorithm 3.3.3 for f =

∑
wjCj.

Theorem 3.3.4 Algorithm 3.3.3 is a polynomial-time 3
2
-approximation algorithm.

Proof Let π′ be an optimal schedule for 1|prec; pj = p; p-batch; rj|
∑
wjCj. Then,

Cj(π
′) ≥ rj + p, 1 ≤ j ≤ n. Since Cj(π(e

∗)) = r∗j (e
∗) + p, 1 ≤ j ≤ n, we have

Claim 1
∑

1≤j≤nwjCj(π(e
∗))− ∑

1≤j≤nwjCj(π
′) ≤ ∑

1≤j≤nwj(r
∗
j (e

∗)− rj).

Suppose that |{ej : 1 ≤ j ≤ n}| = k and let

{ej : 1 ≤ j ≤ n} = {e(1), e(2), ..., e(k)}

be such that e(1) < e(2) < ... < e(k). Write w(i) =
∑

j: ej=e(i), 1≤j≤nwj.

Since F (e) =
∑

1≤j≤nwj(r
∗
j (e) + pj) and F (e∗) = min1≤i≤k F (e

(i)), we further have∑
1≤j≤nwjr

∗
j (e

∗) ≤ ∑
1≤j≤nwjr

∗
j (e

(i) for 1 ≤ i ≤ k. This implies

Claim 2
∑

1≤j≤nwj(r
∗
j (e

∗)− rj) ≤
∑

1≤j≤nwj(r
∗
j (e

(i) − rj) for 1 ≤ i ≤ k.

By the definition of r∗j (e), for 1 ≤ i ≤ k and 1 ≤ j ≤ n, we have

r∗j (e
(i))− rj = e(i) − ej, if ej ≤ e(i)

and
r∗j (e

(i))− rj = e(i) − ej + p, if ej > e(i).

Hence, for 1 ≤ i ≤ k, we have

∑
1≤j≤nwj(r

∗
j (e

(i))− rj)

=
∑

j:1≤j≤n, ej≤e(i) wj(e
(i) − ej) +

∑
j:1≤j≤n, ej>e(i) wj(e

(i) − ej + p)

=
∑

1≤j≤nwj(e
(i) − ej) +

∑
j:1≤j≤n, ej>e(i) wjp.

8

This can be rewritten as

Claim 3
∑

1≤j≤nwj(r
∗
j (e

(i)) − rj) =
∑

1≤x≤k w
(x)(e(i) − e(x)) +

∑
i+1≤x≤k w

(x)p, for
1 ≤ i ≤ k.

Let Q(i) =
∑

1≤x≤k w
(x)(e(i) − e(x)) +

∑
i+1≤x≤k w

(x)p, for 1 ≤ i ≤ k. Then, by Claim 2
and Claim 3, we have

Claim 4
∑

1≤j≤nwj(r
∗
j (e

∗)− rj) ≤
(∑

1≤i≤k w
(i)

)−1 ∑
1≤i≤k w

(i)Q(i).

By noting the fact that

∑
1≤i≤k

w(i)
∑

1≤x≤k

w(x)(e(i) − e(x)) = 0,

we can easily deduce that

∑
1≤i≤k

w(i)Q(i) =
∑

1≤i≤k

w(i)
∑

i+1≤x≤k

w(x)p.

Equivalently, we have

Claim 5
∑

1≤i≤k w
(i)Q(i) = p · ∑

1≤i<x≤k w
(i)w(x).

Since
∑

1≤i<x≤k

w(i)w(x) <
1

2


 ∑

1≤i≤k

w(i)




2

,

We deduce from Claim 4 and Claim 5 that

∑
1≤j≤nwj(r

∗
j (e

∗)− rj)

≤
(∑

1≤i≤k w
(i)

)−1
· p · ∑

1≤i<x≤k w
(i)w(x)

< 1
2
· p · ∑

1≤i≤k w
(i)

= 1
2

∑
1≤j≤nwjp

≤ 1
2

∑
1≤j≤nwjCj(π

′).

It follows from Claim 1 that

∑
1≤j≤nwjCj(π(e

∗))

≤ ∑
1≤j≤nwjCj(π

′) +
∑

1≤j≤nwj(r
∗
j (e

∗)− rj)

< 3
2

∑
1≤j≤nwjCj(π

′).

The result follows.

✷

We conjecture that the bound 3
2
in Theorem 3.4 can be further improved.

9

4 Makespan Minimization and an Extension

4.1 Makespan Minimization

The problem 1|prec; pj = p; p-batch; rj|Cmax, denoted by P in the sequel, can easily be
solved by the following algorithm.

Algorithm 4.1.1 Makespan Minimization Batching Rule.

At each point, form the next last batch by including all unbatched jobs that have no
unbatched successors.

Clearly, the complexity of Algorithm 4.1 is O(n2). The correctness of Algorithm 4.1
is implied by the following theorem.

Theorem 4.1.2 The makespan of P obtained by Algorithm 4.1 is p+max1≤j≤n rj.

Proof Suppose that BS = (B1, B2, ..., Bk) is the batch sequence obtained by Algo-
rithm 4.1. Let r(i) = max{rj : Jj ∈ Bi}. Then, r(k) = max1≤j≤n rj . For every pair of
adjacent batches Bi and Bi+1, 1 ≤ i ≤ k − 1, let Jx ∈ Bi be such that rx = r(i). By
the batching rule of Algorithm 4.1, there must be a certain Jy ∈ Bi+1 such that Jx ≺ Jy.
Then rx + p ≤ ry. This means that r

(i) + p ≤ r(i+1), for 1 ≤ i ≤ k − 1. Hence, under
the batch sequence BS, each batch Bi has starting time r

(i) and completion time r(i)+ p.
The result follows.

✷

4.2 An Extention

We consider an extension of problem P. In practice, firms seek to reduce the stocking
cost

∑
1≤j≤nwj(Cmax − Cj) for the ordered goods. So, they face a primary-secondary

criterion scheduling problem. The first criterion is to minimize Cmax = max1≤j≤nCj,
and the second criterion is to maximize

∑
1≤j≤nwjCj. We denote this primary-secondary

criterion problem by P∗.

Let BS = (B1, B2, ..., Bk) be the batch sequence obtained by Algorithm 4.1. Let
t = p + max1≤j≤n rj be the minimum makespan of P. By the construction of BS, for
every job J (i) ∈ Bi, there must be a chain of jobs

J (i) ≺ J (i+1) ≺ ... ≺ J (k)

such that J (x) ∈ Bx for i + 1 ≤ x ≤ k. It follows that each job in Bi has a completion
time of at most t− (k− i)p and a starting time of at most t− (k− i+ 1)p in any feasible
schedule. To maximize

∑
1≤j≤nwjCj , we define BS

∗ as the schedule obtained from BS
such that each batch Bi has a starting time of t − (k − i + 1)p and a completion time
of t − (k − i)p. It is clear that BS∗ is a feasible schedule and each job completes at its

10

largest possible completion time under the restriction that the makespan is minimized.
Hence, we conclude the following theorem.

Theorem 4.2.1 BS∗ is an optimal schedule for the primary-secondary criterion
problem P∗.

5 Conclusion

The parallel-batching scheduling problem 1|prec; pj = p; p-batch; rj|f was studied in this
paper. The restriction on jobs with identical processing times largely simplifies the prob-
lem, but the presence of the precedence constraints between jobs increases the hardness
of the problem. We showed in this paper that the problem 1|prec; pj = 1; p-batch; rj|f
can be solved in O(n2) time, 1|pj = p; p-batch; rj |f can be solved in O(n3) time, and
1|complete-prec; pj = p; p-batch; rj |f can be solved in O(n7) time. We gave an O(n2)
time 3

2
-approximation algorithm for the problem 1|prec; pj = p; p-batch; rj |

∑
wjCj . We

also showed that the problem 1|prec; pj = p; p-batch; rj |Cmax can be solved in O(n
2) time.

Furthermore, we gave an expression of the minimum makespan. For further work, the
complexity of 1|prec; pj = p; p-batch; rj|f is still open in general for the regular objective
function

f ∈ {Lmax,
∑

Cj ,
∑

wjCj,
∑

Uj ,
∑

wjUj ,
∑

Tj,
∑

wjTj}.

Acknowledgements

We are grateful for the constructive comments of the referees on an earlier version of this
paper. This research was supported in part by The Hong Kong Polytechnic University
under a grant from the ASD in China Business Services. The last two authors were also
supported in part by the National Natural Science Foundation of China.

References

[1] P. Brucker, Scheduling Algorithms, Springer-Verlag, Berlin, 2001.

[2] P. Brucker, A. Gladky, H. Hoogeveen, M.Y. Kovalyov, C.N. Potts, T. Tauten-
hahn and S.L. van de Velde, Scheduling a batching machine, Journal of Scheduling,
1(1998), 31-54.

[3] P. Brucker and S. Knust, Complexity results for scheduling problems, http://www.
mathematik.uni-osnabrueck.de/research/OR/class/, 2003.

[4] T.C.E. Cheng, Z.H. Liu and W.C. Yu, Scheduling jobs with release dates and dead-
lines on a batch processing machine, IIE Transactions, 33(2001), 685-690.

11

[5] T.C.E. Cheng, C.T. Ng, J.J. Yuan and Z.H. Liu, Scheduling a batch processing
machine subject to precedence constraints (in submission).

[6] X. Deng and Y.Z. Zhang, Minimizing mean response time for batch processing sys-
tems, Lecture notes in Computer Science, 1627(1999), 231-240.

[7] J.K. Lenstra, A.H.G. Rinnooy Kan and P. Brucker, Complexity of machine scheduling
problems, Annals of Discrete Mathematics, 1(1977), 343-362.

[8] C.-Y. Lee, R. Uzsoy and L.A. Martin-Vega, Efficient algorithms for scheduling semi-
conductor burn-in operations, Operations Research, 40(1992), 764-775.

[9] Z.H. Liu and W.C. Yu, Scheduling one batch processor subject to job release dates,
Discrete Applied Mathematics, 105(2000), 129-136.

[10] Z.H. Liu, J.J. Yuan and T.C.E. Cheng, On scheduling an unbounded batch machine,
Operation Research Letters, 31(2003), 42-48.

12

