60 research outputs found
GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy
We propose to perform a continuously scanning all-sky survey from 200 keV to
80 MeV achieving a sensitivity which is better by a factor of 40 or more
compared to the previous missions in this energy range. The Gamma-Ray Imaging,
Polarimetry and Spectroscopy (GRIPS) mission addresses fundamental questions in
ESA's Cosmic Vision plan. Among the major themes of the strategic plan, GRIPS
has its focus on the evolving, violent Universe, exploring a unique energy
window. We propose to investigate -ray bursts and blazars, the
mechanisms behind supernova explosions, nucleosynthesis and spallation, the
enigmatic origin of positrons in our Galaxy, and the nature of radiation
processes and particle acceleration in extreme cosmic sources including pulsars
and magnetars. The natural energy scale for these non-thermal processes is of
the order of MeV. Although they can be partially and indirectly studied using
other methods, only the proposed GRIPS measurements will provide direct access
to their primary photons. GRIPS will be a driver for the study of transient
sources in the era of neutrino and gravitational wave observatories such as
IceCUBE and LISA, establishing a new type of diagnostics in relativistic and
nuclear astrophysics. This will support extrapolations to investigate star
formation, galaxy evolution, and black hole formation at high redshifts.Comment: to appear in Exp. Astron., special vol. on M3-Call of ESA's Cosmic
Vision 2010; 25 p., 25 figs; see also www.grips-mission.e
Trends in template/fragment-free protein structure prediction
Predicting the structure of a protein from its amino acid sequence is a long-standing unsolved problem in computational biology. Its solution would be of both fundamental and practical importance as the gap between the number of known sequences and the number of experimentally solved structures widens rapidly. Currently, the most successful approaches are based on fragment/template reassembly. Lacking progress in template-free structure prediction calls for novel ideas and approaches. This article reviews trends in the development of physical and specific knowledge-based energy functions as well as sampling techniques for fragment-free structure prediction. Recent physical- and knowledge-based studies demonstrated that it is possible to sample and predict highly accurate protein structures without borrowing native fragments from known protein structures. These emerging approaches with fully flexible sampling have the potential to move the field forward
Neuromechanical response of the upper body to unexpected perturbations during gait initiation in young and older adults
Background:
Control of upper body motion deteriorates with ageing leading to impaired ability to preserve balance during gait, but little is known on the contribution of the upper body to preserve balance in response to unexpected perturbations during locomotor transitions, such as gait initiation.
Aim:
To investigate differences between young and older adults in the ability to modify the trunk kinematics and muscle activity following unexpected waist lateral perturbations during gait initiation.
Methods:
Ten young (25 ± 2 years) and ten older adults (73 ± 5 years) initiated locomotion from stance while a lateral pull was randomly applied to the pelvis. Two force plates were used to define the feet centre-of-pressure displacement. Angular displacement of the trunk in the frontal plane was obtained through motion analysis. Surface electromyography of cervical and thoracic erector spinae muscles was recorded bilaterally.
Results:
A lower trunk lateral bending towards the stance leg side in the preparatory phase of gait initiation was observed in older participants following perturbation. Right thoracic muscle activity was increased in response to the perturbation during the initial phase of gait initiation in young (+ 68%) but not in older participants (+ 7%).
Conclusions:
The age-related reduction in trunk movement could indicate a more rigid behaviour of the upper body employed by older compared to young individuals in response to unexpected perturbations preceding the initiation of stepping. Older adults’ delayed activation of thoracic muscles could suggest impaired reactive mechanisms that may potentially lead to a fall in the early stages of the gait initiation
Beam Energy Dependence of Jet-Quenching Effects in Au plus Au Collisions at root s(NN)=7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV
We report measurements of the nuclear modification factor, , for charged hadrons as well as identified , , and for Au+Au collision energies of = 7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV. We observe a clear high- net suppression in central collisions at 62.4 GeV for charged hadrons which evolves smoothly to a large net enhancement at lower energies. This trend is driven by the evolution of the pion spectra, but is also very similar for the kaon spectra. While the magnitude of the proton at high does depend on collision energy, neither the proton nor the anti-proton at high exhibit net suppression at any energy. A study of how the binary collision scaled high- yield evolves with centrality reveals a non-monotonic shape that is consistent with the idea that jet-quenching is increasing faster than the combined phenomena that lead to enhancement.We report measurements of the nuclear modification factor RCP for charged hadrons as well as identified π+(-), K+(-), and p(p¯) for Au+Au collision energies of sNN=7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV. We observe a clear high-pT net suppression in central collisions at 62.4 GeV for charged hadrons which evolves smoothly to a large net enhancement at lower energies. This trend is driven by the evolution of the pion spectra but is also very similar for the kaon spectra. While the magnitude of the proton RCP at high pT does depend on the collision energy, neither the proton nor the antiproton RCP at high pT exhibit net suppression at any energy. A study of how the binary collision-scaled high-pT yield evolves with centrality reveals a nonmonotonic shape that is consistent with the idea that jet quenching is increasing faster than the combined phenomena that lead to enhancement
- …