63 research outputs found

    Metabolic Adaptation in Transplastomic Plants Massively Accumulating Recombinant Proteins

    Get PDF
    BACKGROUND: Recombinant chloroplasts are endowed with an astonishing capacity to accumulate foreign proteins. However, knowledge about the impact on resident proteins of such high levels of recombinant protein accumulation is lacking. METHODOLOGY/PRINCIPAL FINDINGS: Here we used proteomics to characterize tobacco (Nicotiana tabacum) plastid transformants massively accumulating a p-hydroxyphenyl pyruvate dioxygenase (HPPD) or a green fluorescent protein (GFP). While under the conditions used no obvious modifications in plant phenotype could be observed, these proteins accumulated to even higher levels than ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), the most abundant protein on the planet. This accumulation occurred at the expense of a limited number of leaf proteins including Rubisco. In particular, enzymes involved in CO(2) metabolism such as nuclear-encoded plastidial Calvin cycle enzymes and mitochondrial glycine decarboxylase were found to adjust their accumulation level to these novel physiological conditions. CONCLUSIONS/SIGNIFICANCE: The results document how protein synthetic capacity is limited in plant cells. They may provide new avenues to evaluate possible bottlenecks in recombinant protein technology and to maintain plant fitness in future studies aiming at producing recombinant proteins of interest through chloroplast transformation

    Brugia malayi Excreted/Secreted Proteins at the Host/Parasite Interface: Stage- and Gender-Specific Proteomic Profiling

    Get PDF
    Relatively little is known about the filarial proteins that interact with the human host. Although the filarial genome has recently been completed, protein profiles have been limited to only a few recombinants or purified proteins of interest. Here, we describe a large-scale proteomic analysis using microcapillary reverse-phase liquid chromatography-tandem-mass spectrometry to identify the excretory-secretory (ES) products of the L3, L3 to L4 molting ES, adult male, adult female, and microfilarial stages of the filarial parasite Brugia malayi. The analysis of the ES products from adult male, adult female, microfilariae (Mf), L3, and molting L3 larvae identified 852 proteins. Annotation suggests that the functional and component distribution was very similar across each of the stages studied; however, the Mf contributed a higher proportion to the total number of identified proteins than the other stages. Of the 852 proteins identified in the ES, only 229 had previous confirmatory expressed sequence tags (ESTs) in the available databases. Moreover, this analysis was able to confirm the presence of 274 “hypothetical” proteins inferred from gene prediction algorithms applied to the B. malayi (Bm) genome. Not surprisingly, the majority (160/274) of these “hypothetical” proteins were predicted to be secreted by Signal IP and/or SecretomeP 2.0 analysis. Of major interest is the abundance of previously characterized immunomodulatory proteins such as ES-62 (leucyl aminopeptidase), MIF-1, SERPIN, glutathione peroxidase, and galectin in the ES of microfilariae (and Mf-containing adult females) compared to the adult males. In addition, searching the ES protein spectra against the Wolbachia database resulted in the identification of 90 Wolbachia-specific proteins, most of which were metabolic enzymes that have not been shown to be immunogenic. This proteomic analysis extends our knowledge of the ES and provides insight into the host–parasite interaction

    Speciation in the Deep Sea: Multi-Locus Analysis of Divergence and Gene Flow between Two Hybridizing Species of Hydrothermal Vent Mussels

    Get PDF
    International audienceBackground: Reconstructing the history of divergence and gene flow between closely-related organisms has long been a difficult task of evolutionary genetics. Recently, new approaches based on the coalescence theory have been developed to test the existence of gene flow during the process of divergence. The deep sea is a motivating place to apply these new approaches. Differentiation by adaptation can be driven by the heterogeneity of the hydrothermal environment while populations should not have been strongly perturbed by climatic oscillations, the main cause of geographic isolation at the surface. Methodology/Principal Finding: Samples of DNA sequences were obtained for seven nuclear loci and a mitochondrial locus in order to conduct a multi-locus analysis of divergence and gene flow between two closely related and hybridizing species of hydrothermal vent mussels, Bathymodiolus azoricus and B. puteoserpentis. The analysis revealed that (i) the two species have started to diverge approximately 0.760 million years ago, (ii) the B. azoricus population size was 2 to 5 time greater than the B. puteoserpentis and the ancestral population and (iii) gene flow between the two species occurred over the complete species range and was mainly asymmetric, at least for the chromosomal regions studied. Conclusions/Significance: A long history of gene flow has been detected between the two Bathymodiolus species. However, it proved very difficult to conclusively distinguish secondary introgression from ongoing parapatric differentiation. As powerful as coalescence approaches could be, we are left by the fact that natural populations often deviates from standard assumptions of the underlying model. A more direct observation of the history of recombination at one of the seven loci studied suggests an initial period of allopatric differentiation during which recombination was blocked between lineages. Even in the deep sea, geographic isolation may well be a crucial promoter of speciation
    corecore