45 research outputs found

    Ozone and alkyl nitrate formation from the Deepwater Horizon oil spill atmospheric emissions

    Get PDF
    Ozone (O3), alkyl nitrates (RONO2), and other photochemical products were formed in the atmosphere downwind from the Deepwater Horizon (DWH) oil spill by photochemical reactions of evaporating hydrocarbons with NOx (=NO+NO2) emissions from spill response activities. Reactive nitrogen species and volatile organic compounds (VOCs) were measured from an instrumented aircraft during daytime flights in the marine boundary layer downwind from the area of surfacing oil. A unique VOC mixture, where alkanes dominated the hydroxyl radical (OH) loss rate, was emitted into a clean marine environment, enabling a focused examination of O3 and RONO 2 formation processes. In the atmospheric plume from DWH, the OH loss rate, an indicator of potential O3 formation, was large and dominated by alkanes with between 5 and 10 carbons per molecule (C 5-C10). Observations showed that NOx was oxidized very rapidly with a 0.8h lifetime, producing primarily C6-C10 RONO2 that accounted for 78% of the reactive nitrogen enhancements in the atmospheric plume 2.5h downwind from DWH. Both observations and calculations of RONO2 and O3 production rates show that alkane oxidation dominated O3 formation chemistry in the plume. Rapid and nearly complete oxidation of NOx to RONO2 effectively terminated O3 production, with O3 formation yields of 6.0±0.5 ppbv O3 per ppbv of NOx oxidized. VOC mixing ratios were in large excess of NOx, and additional NOx would have formed additional O3 in this plume. Analysis of measurements of VOCs, O3, and reactive nitrogen species and calculations of O3 and RONO2 production rates demonstrate that NOx-VOC chemistry in the DWH plume is explained by known mechanisms. Copyright 2012 by the American Geophysical Union

    Model-measurement consistency and limits of bioaerosol abundance over the continental United States

    Get PDF
    Due to low concentrations and chemical complexity, in situ observations of bioaerosol are geographically and temporally sparse, and this limits the accuracy of current emissions inventories. In this study, we apply a new methodology, including corrections for misidentification of mineral dust, to measurements of single particles over four airborne sampling campaigns to derive vertical profiles of bioaerosol over the continental United States. The new methodology is based on single-particle mass spectrometry (SPMS); it can extend historic datasets to include measurements of bioaerosol, it allows comparisons to other techniques, and it generally agrees with a global aerosol model. In the locations sampled, bioaerosols were at least a factor of 10 less abundant than mineral dust. Below 2 km, bioaerosol concentrations were measured between 6×103 and 2×104 m−3. Between 2 and 8 km, bioaerosol concentrations were between 0 and 2×104 m−3, and above 8 km, bioaerosol concentrations were between 0 and 1×103 m−3. Between 30 % and 80 % of single bioaerosol particles detected were internally mixed with dust. A direct comparison of the SPMS methodology with a co-located wideband integrated bioaerosol sensor (WIB) fluorescence sensor on a mountaintop site showed agreement to within a factor of 3 over the common size range

    Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California

    Get PDF
    Airborne measurements of methane (CH4) and carbon dioxide (CO2) were taken over the rice growing region of California's Sacramento Valley in the late spring of 2010 and 2011. From these and ancillary measurements, we show that CH4 mixing ratios were higher in the planetary boundary layer above the Sacramento Valley during the rice growing season than they were before it, which we attribute to emissions from rice paddies. We derive daytime emission fluxes of CH4 between 0.6 and 2.0% of the CO2 taken up by photosynthesis on a per carbon, or mole to mole, basis. We also use a mixing model to determine an average CH 4/CO2 flux ratio of -0.6% for one day early in the growing season of 2010. We conclude the CH4/CO2 flux ratio estimates from a single rice field in a previous study are representative of rice fields in the Sacramento Valley. If generally true, the California Air Resources Board (CARB) greenhouse gas inventory emission rate of 2.7×1010g CH4/yr is approximately three times lower than the range of probable CH4 emissions (7.8-9.3×10 10g CH4/yr) from rice cultivation derived in this study. We attribute this difference to decreased burning of the residual rice crop since 1991, which leads to an increase in CH4 emissions from rice paddies in succeeding years, but which is not accounted for in the CARB inventory. © 2012. American Geophysical Union. All Rights Reserved

    Airborne observations of regional variation in fluorescent aerosol across the United States

    Get PDF
    Airborne observations of fluorescent aerosol were made aboard an airship during CloudLab, a series of flights that took place in September and October of 2013 and covered a wideband of longitude across the continental U.S. between Florida and California and between 28 and 37-N latitudes. Sampling occurred from near the surface to 1000-m above the ground. A Wideband Integrated Bioaerosol Sensor (WIBS-4) measured average concentrations of supermicron fluorescent particles aloft (1-μm to 10-μm), revealing number concentrations ranging from 2.1-±-0.8 to 8.7-±-2.2-×-104 particles m-3 and representing up to 24% of total supermicron particle number. We observed distinct variations in size distributions and fluorescent characteristics in different regions, and attribute these to geographically diverse bioaerosol. Fluorescent aerosol detected in the east is largely consistent with mold spores observed in a laboratory setting, while a shift to larger sizes associated with different fluorescent patterns is observed in the west. Fluorescent bioaerosol loadings in the desert west were as high as those near the Gulf of Mexico, suggesting that bioaerosol is a substantial component of supermicron aerosol both in humid and arid environments. The observations are compared to model fungal and bacterial loading predictions, and good agreement in both particle size and concentrations is observed in the east. In the west, the model underestimated observed concentrations by a factor between 2 and 4 and the prescribed particle sizes are smaller than the observed fluorescent aerosol. A classification scheme for use with WIBS data is also presented. Key Points Fluorescent supermicron aerosol loads are reported across the southern U.S. Regional variations in fluorescent behavior and particle size are observed Comparison to modeled emissions shows an underestimate in the wes

    Atmospheric emissions from the deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate

    Get PDF
    The fate of deepwater releases of gas and oil mixtures is initially determined by solubility and volatility of individual hydrocarbon species; these attributes determine partitioning between air and water. Quantifying this partitioning is necessary to constrain simulations of gas and oil transport, to predict marine bioavailability of different fractions of the gas-oil mixture, and to develop a comprehensive picture of the fate of leaked hydrocarbons in the marine environment. Analysis of airborne atmospheric data shows massive amounts (∼258,000 kg/day) of hydrocarbons evaporating promptly from the Deepwater Horizon spill; these data collected during two research flights constrain air-water partitioning, thus bioavailability and fate, of the leaked fluid. This analysis quantifies the fraction of surfacing hydrocarbons that dissolves in the water column (∼33% by mass), the fraction that does not dissolve, and the fraction that evaporates promptly after surfacing (∼14% by mass). We do not quantify the leaked fraction lacking a surface expression; therefore, calculation of atmospheric mass fluxes provides a lower limit to the total hydrocarbon leak rate of 32,600 to 47,700 barrels of fluid per day, depending on reservoir fluid composition information. This study demonstrates a new approach for rapid-response airborne assessment of future oil spills. Copyright 2011 by the American Geophysical Union

    Pyrosequencing the Bemisia tabaci Transcriptome Reveals a Highly Diverse Bacterial Community and a Robust System for Insecticide Resistance

    Get PDF
    BACKGROUND: Bemisia tabaci (Gennadius) is a phloem-feeding insect poised to become one of the major insect pests in open field and greenhouse production systems throughout the world. The high level of resistance to insecticides is a main factor that hinders continued use of insecticides for suppression of B. tabaci. Despite its prevalence, little is known about B. tabaci at the genome level. To fill this gap, an invasive B. tabaci B biotype was subjected to pyrosequencing-based transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes. METHODOLOGY AND PRINCIPAL FINDINGS: Using Roche 454 pyrosequencing, 857,205 reads containing approximately 340 megabases were obtained from the B. tabaci transcriptome. De novo assembly generated 178,669 unigenes including 30,980 from insects, 17,881 from bacteria, and 129,808 from the nohit. A total of 50,835 (28.45%) unigenes showed similarity to the non-redundant database in GenBank with a cut-off E-value of 10-5. Among them, 40,611 unigenes were assigned to one or more GO terms and 6,917 unigenes were assigned to 288 known pathways. De novo metatranscriptome analysis revealed highly diverse bacterial symbionts in B. tabaci, and demonstrated the host-symbiont cooperation in amino acid production. In-depth transcriptome analysis indentified putative molecular markers, and genes potentially involved in insecticide resistance and nutrient digestion. The utility of this transcriptome was validated by a thiamethoxam resistance study, in which annotated cytochrome P450 genes were significantly overexpressed in the resistant B. tabaci in comparison to its susceptible counterparts. CONCLUSIONS: This transcriptome/metatranscriptome analysis sheds light on the molecular understanding of symbiosis and insecticide resistance in an agriculturally important phloem-feeding insect pest, and lays the foundation for future functional genomics research of the B. tabaci complex. Moreover, current pyrosequencing effort greatly enriched the existing whitefly EST database, and makes RNAseq a viable option for future genomic analysis

    Methods, fluxes and sources of gas phase alkyl nitrates in the coastal air

    Get PDF
    The daily and seasonal atmospheric concentrations, deposition fluxes and emission sources of a few C3-C9 gaseous alkyl nitrates (ANs) at the Belgian coast (De Haan) on the Southern North Sea were determined. An adapted sampler design for low- and high-volume air-sampling, optimized sample extraction and clean-up, as well as identification and quantification of ANs in air samples by means of gas chromatography mass spectrometry, are reported. The total concentrations of ANs ranged from 0.03 to 85 pptv and consisted primarily of the nitro-butane and nitro-pentane isomers. Air mass backward trajectories were calculated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to determine the influence of main air masses on AN levels in the air. The shorter chain ANs have been the most abundant in the Atlantic/Channel/UK air masses, while longer chain ANs prevailed in continental air. The overall mean N fluxes of the ANs were slightly higher for summer than those for winter-spring, although their contributions to the total nitrogen flux were low. High correlations between AN and HNO2 levels were observed during winter/spring. During summer, the shorter chain ANs correlated well with precipitation. Source apportionment by means of principal component analysis indicated that most of the gas phase ANs could be attributed to traffic/combustion, secondary photochemical formation and biomass burning, although marine sources may also have been present and a contributing factor. © 2014 Springer International Publishing Switzerland
    corecore