246 research outputs found

    Modelling the Effect of Temperature on Respiration Rate of Fresh Cut Papaya (Carica papaya L.) Fruits.

    Get PDF
    A respiration rate (RR) model based on Peleg’s equation was developed for predicting RRs of fresh cut papaya. Respiration data for fresh cut papaya at 3/4 maturity were generated at temperatures 5, 10, 15, 20, 25 and 30°C using a closed system. RRs was found to be significantly influenced by storage temperature and increased from 0.021 to 0.289 mL[O2]/kg·h and 0.063 to 0.393 mL[CO2]/kg·h as a function of O2 and CO2 gas concentrations, respectively. Peleg’s constant K 1 and K 2 were obtained from linear regression analysis using GraphPad Prism 5.0 software and regression coefficients have good fit with values close to unity. The model was verified to assess the capability of its predictability of the RRs over the temperatures. There was good agreement with the experimentally estimated RRs. Information derived from the model can contribute in the design of successful modified atmospheric systems for storage of fresh cut papaya

    Diacylglycerol Kinase β Knockout Mice Exhibit Lithium-Sensitive Behavioral Abnormalities

    Get PDF
    BACKGROUND: Diacylglycerol kinase (DGK) is an enzyme that phosphorylates diacylglycerol (DG) to produce phosphatidic acid (PA). DGKβ is widely distributed in the central nervous system, such as the olfactory bulb, cerebral cortex, striatum, and hippocampus. Recent studies reported that the splice variant at the COOH-terminal of DGKβ was related to bipolar disorder, but its detailed mechanism is still unknown. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we performed behavioral tests using DGKβ knockout (KO) mice to investigate the effects of DGKβ deficits on psychomotor behavior. DGKβ KO mice exhibited some behavioral abnormalities, such as hyperactivity, reduced anxiety, and reduced depression. Additionally, hyperactivity and reduced anxiety were attenuated by the administration of the mood stabilizer, lithium, but not haloperidol, diazepam, or imipramine. Moreover, DGKβ KO mice showed impairment in Akt-glycogen synthesis kinase (GSK) 3β signaling and cortical spine formation. CONCLUSIONS/SIGNIFICANCE: These findings suggest that DGKβ KO mice exhibit lithium-sensitive behavioral abnormalities that are, at least in part, due to the impairment of Akt-GSK3β signaling and cortical spine formation

    Methamphetamine Increases LPS-Mediated Expression of IL-8, TNF-α and IL-1β in Human Macrophages through Common Signaling Pathways

    Get PDF
    The use of methamphetamine (MA) has increased in recent years, and is a major health concern throughout the world. The use of MA has been associated with an increased risk of acquiring HIV-1, along with an increased probability of the acquisition of various sexually transmitted infections. In order to determine the potential effects of MA exposure in the context of an infectious agent, U937 macrophages were exposed to various combinations of MA and bacterial lipopolysaccharide (LPS). Treatment with MA alone caused significant increases in the levels of TNF-α, while treatment with both MA and LPS resulted in significant increases in TNF-α, IL-1β and the chemokine IL-8. The increases in cytokine or chemokine levels seen when cells were treated with both LPS and MA were generally greater than those increases observed when cells were treated with only LPS. Treatment with chemical inhibitors demonstrated that the signal transduction pathways including NF-kB, MAPK, and PI3-Akt were involved in mediating the increased inflammatory response. As discussed in the paper, these pathways appear to be utilized by both MA and LPS, in the induction of these inflammatory mediators. Since these pathways are involved in the induction of inflammation in response to other pathogens, this suggests that MA-exacerbated inflammation may be a common feature of infectious disease in MA abusers

    Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation.

    Get PDF
    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1-D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated.A special acknowledgement to Karl Deisseroth from Stanford University, for providing viral constructs and for comments on the manuscript, and to Alan Dorval from the University of Utah, for providing mouse strains. Thanks to Luis Jacinto, Joao Oliveira and Joana Silva that helped in some technical aspects of the experiments. C.S.-C., B.C., A.D.-P. and S.B. are recipients of Fundacao para a Ciencia e Tecnologia (FCT) fellowships (SFRH/BD/51992/2012; SFRH/BD/98675/2013; SFRH/BD/90374/2012; SFRH/BD/89936/2012). A.J.R. is a FCT Investigator (IF/00883/2013). This work was co-financed by the Portuguese North Regional Operational Program (ON.2 - O Novo Norte) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER). Part of the work was supported by the Janssen Neuroscience Prize (1st edition).info:eu-repo/semantics/publishedVersio

    A single evolutionary innovation drives the deep evolution of symbiotic N<sub>2</sub>-fixation in angiosperms

    Get PDF
    Symbiotic associations occur in every habitat on earth, but we know very little about their evolutionary histories. Current models of trait evolution cannot adequately reconstruct the deep history of symbiotic innovation, because they assume homogenous evolutionary processes across millions of years. Here we use a recently developed, heterogeneous and quantitative phylogenetic framework to study the origin of the symbiosis between angiosperms and nitrogen-fixing (N2) bacterial symbionts housed in nodules. We compile the largest database of global nodulating plant species and reconstruct the symbiosis’ evolution. We identify a single, cryptic evolutionary innovation driving symbiotic N2-fixation evolution, followed by multiple gains and losses of the symbiosis, and the subsequent emergence of ‘stable fixers’ (clades extremely unlikely to lose the symbiosis). Originating over 100 MYA, this innovation suggests deep homology in symbiotic N2-fixation. Identifying cryptic innovations on the tree of life is key to understanding the evolution of complex traits, including symbiotic partnerships

    Antiproliferative Effects of DNA Methyltransferase 3B Depletion Are Not Associated with DNA Demethylation

    Get PDF
    Silencing of genes by hypermethylation contributes to cancer progression and has been shown to occur with increased frequency at specific genomic loci. However, the precise mechanisms underlying the establishment and maintenance of aberrant methylation marks are still elusive. The de novo DNA methyltransferase 3B (DNMT3B) has been suggested to play an important role in the generation of cancer-specific methylation patterns. Previous studies have shown that a reduction of DNMT3B protein levels induces antiproliferative effects in cancer cells that were attributed to the demethylation and reactivation of tumor suppressor genes. However, methylation changes have not been analyzed in detail yet. Using RNA interference we reduced DNMT3B protein levels in colon cancer cell lines. Our results confirm that depletion of DNMT3B specifically reduced the proliferation rate of DNMT3B-overexpressing colon cancer cell lines. However, genome-scale DNA methylation profiling failed to reveal methylation changes at putative DNMT3B target genes, even in the complete absence of DNMT3B. These results show that DNMT3B is dispensable for the maintenance of aberrant DNA methylation patterns in human colon cancer cells and they have important implications for the development of targeted DNA methyltransferase inhibitors as epigenetic cancer drugs

    Neuroethics and fMRI: Mapping a Fledgling Relationship

    Get PDF
    Human functional magnetic resonance imaging (fMRI) informs the understanding of the neural basis of mental function and is a key domain of ethical enquiry. It raises questions about the practice and implications of research, and reflexively informs ethics through the empirical investigation of moral judgments. It is at the centre of debate surrounding the importance of neuroscience findings for concepts such as personhood and free will, and the extent of their practical consequences. Here, we map the landscape of fMRI and neuroethics, using citation analysis to uncover salient topics. We find that this landscape is sparsely populated: despite previous calls for debate, there are few articles that discuss both fMRI and ethical, legal, or social implications (ELSI), and even fewer direct citations between the two literatures. Recognizing that practical barriers exist to integrating ELSI discussion into the research literature, we argue nonetheless that the ethical challenges of fMRI, and controversy over its conceptual and practical implications, make this essential

    Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin–orbit momentum conservation

    Get PDF
    [EN]Optical interactions are governed by both spin and angular momentum conservation laws, which serve as a tool for controlling light–matter interactions or elucidating electron dynamics and structure of complex systems. Here, we uncover a form of simultaneous spin and orbital angular momentum conservation and show, theoretically and experimentally, that this phenomenon allows for unprecedented control over the divergence and polarization of extreme-ultraviolet vortex beams. High harmonics with spin and orbital angular momenta are produced, opening a novel regime of angular momentum conservation that allows for manipulation of the polarization of attosecond pulses—from linear to circular—and for the generation of circularly polarized vortices with tailored orbital angular momentum, including harmonic vortices with the same topological charge as the driving laser beam. Our work paves the way to ultrafast studies of chiral systems using high-harmonic beams with designer spin and orbital angular momentum.The authors are thankful for useful and productive conversations with E. Pisanty, C. Durfee, D. Hickstein, S. Alperin and M. Siemens. H.C.K. and M.M.M. graciously acknowledge support from the Department of Energy BES Award No. DE-FG02–99ER14982 for the experimental implementation, as well as a MURI grant from the Air Force Office of Scientific Research under Award No. FA9550–16–1–0121 for the theory. J.L.E., N.J.B. and Q.L.N. acknowledge support from National Science Foundation Graduate Research Fellowships (Grant No. DGE-1144083). C.H.-G., J.S.R. and L.P. acknowledge support from Junta de Castilla y León (SA046U16) and Ministerio de Economía y Competitividad (FIS2013–44174-P, FIS2016–75652-P). C.H.-G. acknowledges support from a 2017 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation. L.R. acknowledges support from Ministerio de Educación, Cultura y Deporte (FPU16/02591). A.P. acknowledges support from the Marie Sklodowska-Curie Grant, Agreement No. 702565. We thankfully acknowledge the computer resources at MareNostrum and the technical support provided by Barcelona Supercomputing Center (RES-AECT-2014–2–0085). This research made use of the high-performance computingresources of the Castilla y León Supercomputing Center (SCAYLE, www.scayle.es),financed by the European Regional Development Fund (ERDF). Certain commercial instruments are identified to specify the experimental study adequately. This does not imply endorsement by the National Institute of Standards and Technology (NIST) or that the instruments are the best available for the purpose
    corecore