227 research outputs found

    Understanding co-polymerization in amyloid formation by direct observation of mixed oligomers

    Get PDF
    Although amyloid assembly in vitro is commonly investigated using single protein sequences, fibril formation in vivo can be more heterogeneous, involving co-assembly of proteins of different length, sequence and/or post-translational modifications. Emerging evidence suggests that co-polymerization can alter the rate and/or mechanism of aggregation and can contribute to pathogenicity. Electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is uniquely suited to the study of these heterogeneous ensembles. Here, ESI-IMS-MS combined with analysis of fibrillation rates using thioflavin T (ThT) fluorescence, is used to track the course of aggregation of variants of islet-amyloid polypeptide (IAPP) in isolation and in pairwise mixtures. We identify a sub-population of extended monomers as the key precursors of amyloid assembly, and reveal that the fastest aggregating sequence in peptide mixtures determines the lag time of fibrillation, despite being unable to cross-seed polymerization. The results demonstrate that co-polymerization of IAPP sequences radically alters the rate of amyloid assembly by altering the conformational properties of the mixed oligomers that form

    Assembly pathway of hepatitis B core virus-like particles from genetically fused dimers

    Get PDF
    Macromolecular complexes are responsible for many key biological processes. However, in most cases details of the assembly/disassembly of such complexes are unknown at the molecular level, as the low abundance and transient nature of assembly intermediates make analysis challenging. The assembly of virus capsids is an example of such a process. The hepatitis B virus capsid (core) can be composed of either 90 or 120 dimers of coat protein. Previous studies have proposed a trimer of dimers as an important intermediate species in assembly, acting to nucleate further assembly by dimer addition. Using novel genetically-fused coat protein dimers, we have been able to trap higher-order assembly intermediates and to demonstrate for the first time that both dimeric and trimeric complexes are on pathway to virus-like particle (capsid) formation

    Conformational flexibility within the nascent polypeptide–associated complex enables its interactions with structurally diverse client proteins

    Get PDF
    As newly synthesized polypeptides emerge from the ribosome, it is crucial that they fold correctly. To prevent premature aggregation, nascent chains interact with chaperones that facilitate folding or prevent misfolding until protein synthesis is complete. Nascent polypeptide–associated complex (NAC) is a ribosome-associated chaperone important for protein homeostasis. However, how NAC binds its substrates remains unclear. Using native electrospray ionization MS (ESI MS), limited proteolysis, NMR and cross-linking, we analysed the conformational properties of NAC from Caenorhabditis elegans and studied its ability to bind proteins in different conformational states. Our results revealed that NAC adopts an array of compact and expanded conformations and binds weakly to client proteins that are unfolded, folded, or intrinsically disordered, suggestive of broad substrate compatibility. Of note, we found that this weak binding retards aggregation of the intrinsically disordered protein α-synuclein both in vitro and in vivo. These findings provide critical insights into the structure and function of NAC. Specifically, they reveal the ability of NAC to exploit its conformational plasticity to bind a repertoire of substrates having unrelated sequences and structures independently of actively translating ribosomes

    Long-Range Conformational Changes in Monoclonal Antibodies Revealed Using FPOP-LC-MS/MS

    Get PDF
    Differences in conformational dynamics between two full-length monoclonal antibodies have been probed in detail using Fast Photochemical Oxidation of Proteins (FPOP) followed by proteolysis and LC-ESI-MS/MS analyses. FPOP uses hydroxyl radical labelling to probe the surface-accessible regions of proteins and has the advantage that the resulting covalent modifications are irreversible, thus permitting optimal down-stream analysis. Despite the two monoclonal antibodies (mAbs) differing by only three amino acids in the heavy chain complementarity determining regions (CDRs), one mAb, MEDI1912-WFL, has been shown to undergo reversible self-association at high concentrations and exhibited poor pharmacokinetic properties in vivo, properties which are markedly improved in the variant, MEDI1912-STT. Identifying the differences in oxidative labelling between the two antibodies at residue level revealed long-range effects which provide a key insight into their conformational differences. Specifically, the amino acid mutations in the CDR region of the heavy chain resulted in significantly different labelling patterns at the interfaces of the CL–CH1 and CH1–CH2 domains, with the non-aggregating variant undergoing up to four times more labelling in this region than the aggregation prone variant, thus suggesting a change in the structure and orientation of the CL – CH1 interface. The wealth of FPOP and LC-MS data obtained enabled the study of the LC elution properties of FPOP-oxidised peptides. Some oxidised amino acids, specifically histidine and lysine, were noted to have unique effects on the retention time of the peptide, offering the promise of using such an analysis as an aid to MS/MS in assigning oxidation sites

    Characterization of Amyloid Oligomers by Electrospray Ionization-Ion Mobility Spectrometry-Mass Spectrometry (ESI-IMS-MS)

    Get PDF
    Soluble oligomers formed during the self-assembly of amyloidogenic peptide and protein species are generally thought to be highly toxic. Consequently, thorough characterization of these species is of much interest in the quest for effective therapeutics and for an enhanced understanding of amyloid fibrillation pathways. The structural characterization of oligomeric species, however, is challenging as they are often transiently and lowly populated, and highly heterogeneous. Electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is a powerful technique which is able to detect individual ion species populated within a complex heterogeneous mixture and characterize them in terms of shape, stoichiometry, ligand binding capability, and relative stability. Herein, we describe the use of ESI-IMS-MS to characterize the size and shape of oligomers of beta-2-microglobulin through use of data calibration and the derivation of models. This enables information about the range of oligomeric species populated en route to amyloid formation and the mode of oligomer growth to be obtained

    Retarded PDI diffusion and a reductive shift in poise of the calcium depleted endoplasmic reticulum

    Get PDF
    Background: Endoplasmic reticulum (ER) lumenal protein thiol redox balance resists dramatic variation in unfolded protein load imposed by diverse physiological challenges including compromise in the key upstream oxidases. Lumenal calcium depletion, incurred during normal cell signaling, stands out as a notable exception to this resilience, promoting a rapid and reversible shift towards a more reducing poise. Calcium depletion induced ER redox alterations are relevant to physiological conditions associated with calcium signaling, such as the response of pancreatic cells to secretagogues and neuronal activity. The core components of the ER redox machinery are well characterized; however, the molecular basis for the calcium-depletion induced shift in redox balance is presently obscure. Results: In vitro, the core machinery for generating disulfides, consisting of ERO1 and the oxidizing protein disulfide isomerase, PDI1A, was indifferent to variation in calcium concentration within the physiological range. However, ER calcium depletion in vivo led to a selective 2.5-fold decline in PDI1A mobility, whereas the mobility of the reducing PDI family member, ERdj5 was unaffected. In vivo, fluorescence resonance energy transfer measurements revealed that declining PDI1A mobility correlated with formation of a complex with the abundant ER chaperone calreticulin, whose mobility was also inhibited by calcium depletion and the calcium depletion-mediated reductive shift was attenuated in cells lacking calreticulin. Measurements with purified proteins confirmed that the PDI1A-calreticulin complex dissociated as Ca2+ concentrations approached those normally found in the ER lumen ([Ca2+] K-0.5max = 190 mu M). Conclusions: Our findings suggest that selective sequestration of PDI1A in a calcium depletion-mediated complex with the abundant chaperone calreticulin attenuates the effective concentration of this major lumenal thiol oxidant, providing a plausible and simple mechanism for the observed shift in ER lumenal redox poise upon physiological calcium depletion.Wellcome Trust [Wellcome 084812/Z/08/Z]; European Commission (EU FP7 Beta-Bat) [277713]; Fundacao para a Ciencia e Tecnologia, Portugal [PTDC/QUI-BIQ/119677/2010]info:eu-repo/semantics/publishedVersio

    Molecular dynamics simulations of mechanical failure in polymorphic arrangements of amyloid fibrils containing structural defects

    Get PDF
    We examine how the different steric packing arrangements found in amyloid fibril polymorphs can modulate their mechanical properties using steered molecular dynamics simulations. Our calculations demonstrate that for fibrils containing structural defects, their ability to resist force in a particular direction can be dominated by both the number and molecular details of the defects that are present. The simulations thereby suggest a hierarchy of factors that govern the mechanical resilience of fibrils, and illustrate the general principles that must be considered when quantifying the mechanical properties of amyloid fibres containing defects

    Behavioural Susceptibility Theory: Professor Jane Wardle and the Role of Appetite in Genetic Risk of Obesity

    Get PDF
    Purpose of Review: There is considerable variability in human body weight, despite the ubiquity of the 'obesogenic' environment. Human body weight has a strong genetic basis and it has been hypothesised that genetic susceptibility to the environment explains variation in human body weight, with differences in appetite being implicated as the mediating mechanism; so-called 'behavioural susceptibility theory' (BST), first described by Professor Jane Wardle. This review summarises the evidence for the role of appetite as a mediator of genetic risk of obesity. Recent Findings: Variation in appetitive traits is observable from infancy, drives early weight gain and is highly heritable in infancy and childhood. Obesity-related common genetic variants identified through genome-wide association studies show associations with appetitive traits, and appetite mediates part of the observed association between genetic risk and adiposity. Summary: Obesity results from an interaction between genetic susceptibility to overeating and exposure to an 'obesogenic' food environment

    The capacity of refugia for conservation planning under climate change

    Get PDF
    Refugia – areas that may facilitate the persistence of species during large-scale, long-term climatic change – are increasingly important for conservation planning. There are many methods for identifying refugia, but the ability to quantify their potential for facilitating species persistence (ie their “capacity”) remains elusive. We propose a flexible framework for prioritizing future refugia, based on their capacity. This framework can be applied through various modeling approaches and consists of three steps: (1) definition of scope, scale, and resolution; (2) identification and quantification; and (3) prioritization for conservation. Capacity is quantified by multiple indicators, including environmental stability, microclimatic heterogeneity, size, and accessibility of the refugium. Using an integrated, semi-mechanistic modeling technique, we illustrate how this approach can be implemented to identify refugia for the plant diversity of Tasmania, Australia. The highest- capacity climate-change refugia were found primarily in cool, wet, and topographically complex environments, several of which we identify as high priorities for biodiversity conservation and management

    The eClinical Care Pathway Framework: A novel structure for creation of online complex clinical care pathways and its application in the management of sexually transmitted infections.

    Get PDF
    Despite considerable international eHealth impetus, there is no guidance on the development of online clinical care pathways. Advances in diagnostics now enable self-testing with home diagnosis, to which comprehensive online clinical care could be linked, facilitating completely self-directed, remote care. We describe a new framework for developing complex online clinical care pathways and its application to clinical management of people with genital chlamydia infection, the commonest sexually transmitted infection (STI) in England.Using the existing evidence-base, guidelines and examples from contemporary clinical practice, we developed the eClinical Care Pathway Framework, a nine-step iterative process. Step 1: define the aims of the online pathway; Step 2: define the functional units; Step 3: draft the clinical consultation; Step 4: expert review; Step 5: cognitive testing; Step 6: user-centred interface testing; Step 7: specification development; Step 8: software testing, usability testing and further comprehension testing; Step 9: piloting. We then applied the Framework to create a chlamydia online clinical care pathway (Online Chlamydia Pathway).Use of the Framework elucidated content and structure of the care pathway and identified the need for significant changes in sequences of care (Traditional: history, diagnosis, information versus Online: diagnosis, information, history) and prescribing safety assessment. The Framework met the needs of complex STI management and enabled development of a multi-faceted, fully-automated consultation.The Framework provides a comprehensive structure on which complex online care pathways such as those needed for STI management, which involve clinical services, public health surveillance functions and third party (sexual partner) management, can be developed to meet national clinical and public health standards. The Online Chlamydia Pathway's standardised method of collecting data on demographics and sexual behaviour, with potential for interoperability with surveillance systems, could be a powerful tool for public health and clinical management.UKCRC Translational Infection Research (TIR) Initiative supported by the Medical Research Council, eSTI2 Consortium (Grant Number G0901608)
    corecore