27 research outputs found
Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L.) grown at four international field sites
Peer reviewedPublisher PD
Screening, diagnosing and treating deafness: the knowledge and conduct of doctors serving in neonatology and/or pediatrics in a tertiary teaching hospital
Physicochemical properties of iron oxide nanoparticles that contribute to cellular ROS-dependent signaling and acellular production of hydroxyl radical
While nanoparticles (NPs) are increasingly used in a variety of consumer products and medical applications, some of these materials have potential health concerns. Macrophages are the primary responders to particles that initiate oxidative stress and inflammatory reactions. Here, we utilized six flame-synthesized, engineered iron oxide NPs with various physicochemical properties (e.g. Fe oxidation state and crystal size) to study their interactions with RAW 264.7 macrophages, their iron solubilities, and their abilities to produce hydroxyl radical in an acellular assay. Both iron solubility and hydroxyl radical production varied between NPs depending on crystalline diameter and surface area of the particles, but not on iron oxidation state. Macrophage treatment with the iron oxide NPs showed a dose-dependent increase of heme oxygenase 1 (HO-1) and NAD(P)H:quinone oxidoreductase (NQO-1). The nuclear factor (NF)-erythroid-derived 2 (E2)-related factor 2 (Nrf2) modulates the transcriptional activity of antioxidant response element (ARE)-driven genes, such as HO-1 and NQO-1. Here, we show that the iron oxide NPs activate Nrf2, leading to its increased nuclear accumulation and enhanced Nrf2 DNA-binding activity in NP-treated RAW 264.7 macrophages. Iron solubility and acellular hydroxyl radical generation depend on the physical properties of the NPs, especially crystalline diameter; however, these properties are weakly linked to the activation of cellular signaling of Nrf2 and the expression of oxidative stress markers. Overall, our work shows for the first time that iron oxide nanoparticles induce cellular marker genes of oxidative stress and that this effect is transcriptionally mediated through the Nrf2-ARE signaling pathway in macrophages
Function of identified interneurons in the leech elucidated using neural networks trained by back-propagation
Genome-Wide Association Studies in Arabidopsis thaliana: Statistical Analysis and Network-Based Augmentation of Signals
Structured patterns in geographic variability of metabolic phenotypes in Arabidopsis thaliana
Understanding molecular factors determining local adaptation is a key challenge, particularly relevant for plants, which are sessile organisms coping with a continuously fluctuating environment. Here we introduce a rigorous network-based approach for investigating the relation between geographic location of accessions and heterogeneous molecular phenotypes. We demonstrate for Arabidopsis accessions that not only genotypic variability but also flowering and metabolic phenotypes show a robust pattern of isolation-by-distance. Our approach opens new avenues to investigate relations between geographic origin and heterogeneous molecular phenotypes, like metabolite profiles, which can easily be obtained in species where genome data is not yet available
Re-Evaluation of Reportedly Metal Tolerant Arabidopsis thaliana Accessions
Santa Clara, Limeport, and Berkeley are Arabidopsis thaliana accessions previously identified as diversely metal resistant. Yet these same accessions were determined to be genetically indistinguishable from the metal sensitive Col-0. We robustly tested tolerance for Zn, Ni and Cu, and genetic relatedness by growing these accessions under a range of Ni, Zn and Cu concentrations for three durations in multiple replicates. Neither metal resistance nor variance in growth were detected between them and Col-0. We re-sequenced the genomes of these accessions and all stocks available for each accession. In all cases they were nearly indistinguishable from the standard laboratory accession Col-0. As Santa Clara was allegedly collected from the Jasper Ridge serpentine outcrop in California, USA we investigated the possibility of extant A. thaliana populations adapted to serpentine soils. Botanically vouchered Arabidopsis accessions in the Jepson database were overlaid with soil maps of California. This provided no evidence of A. thaliana collections from serpentine sites in California. Thus, our work demonstrates that the Santa Clara, Berkeley and Limeport accessions are not metal tolerant, not genetically distinct from Col-0, and that there are no known serpentine adapted populations or accessions of A. thaliana
