20 research outputs found

    Photoinactivation of bacterial and fungal planktonic/biofilm forms using the combination of a porphyrinic formulation with potassium iodide

    Get PDF
    Antimicrobial photodynamic therapy (aPDT) is a promising approach against multidrug-resistant microorganisms. In this work, we accessed the photodynamic efficiency of an affordable formulation composed of five cationic porphyrins (FORM) and its combined effect with potassium iodide (KI) on a large spectrum of microorganisms. For this purpose, the aPDT assays were conducted with FORM alone and FORM + KI on planktonic and biofilm forms of Gram(+) (Staphylococcus aureus) and Gram(−) (Escherichia coli) bacteria and of the yeast Candida albicans. The results obtained indicate that FORM, at low concentrations (0.5–5.0 μM), had an efficient photodynamic action on the planktonic forms of E. coli, S. aureus, and C. albicans. Moreover, the combination of FORM with KI improved the photodynamic action of this PS, promoting microbial inactivation with lower PS concentrations and treatment time. The combination of FORM + KI was also extremely efficient in the destruction of bacterial and fungal biofilms. This outstanding effect may be due to the action of longer-lived iodine reactive species produced by the reaction of KI with the ROS generated by FORM during the aPDT treatment.info:eu-repo/semantics/publishedVersio

    Do cover crops compete with young grapevines for fertilizer nitrogen?

    Get PDF
    Vineyard soils of the Campanha Gaúcha region of Rio Grande do Sul are sandy and have low to medium organic matter content, displaying low natural ability to supply nitrogen (N). Therefore, maintenance of cover crops is essential or the protection of the soil surface from the impact of raindrops and water erosion. The application of nitrogen fertilizers is also necessary. However, cover crops can absorb part of the nitrogen applied in the soil, decreasing the availability to young vines, which may slow the growth of root and shoot, and thus, the beginning of grape production

    Towards More Predictive, Physiological and Animal-free In Vitro Models: Advances in Cell and Tissue Culture 2020 Conference Proceedings

    Get PDF
    Experimental systems that faithfully replicate human physiology at cellular, tissue and organ level are crucial to the development of efficacious and safe therapies with high success rates and low cost. The development of such systems is challenging and requires skills, expertise and inputs from a diverse range of experts, such as biologists, physicists, engineers, clinicians and regulatory bodies. Kirkstall Limited, a biotechnology company based in York, UK, organised the annual conference, Advances in Cell and Tissue Culture (ACTC), which brought together people having a variety of expertise and interests, to present and discuss the latest developments in the field of cell and tissue culture and in vitro modelling. The conference has also been influential in engaging animal welfare organisations in the promotion of research, collaborative projects and funding opportunities. This report describes the proceedings of the latest ACTC conference, which was held virtually on 30th September and 1st October 2020, and included sessions on in vitro models in the following areas: advanced skin and respiratory models, neurological disease, cancer research, advanced models including 3-D, fluid flow and co-cultures, diabetes and other age-related disorders, and animal-free research. The roundtable session on the second day was very interactive and drew huge interest, with intriguing discussion taking place among all participants on the theme of replacement of animal models of disease

    Evaluation of zinc effect on cadmium action in lipid peroxidation and metallothionein levels in the brain

    Get PDF
    Cadmium (Cd) is a known hepato- and nephrotoxic pollutant and zinc (Zn) metalloproteins are important targets of Cd. Hence, the administration of Zn may mitigate Cd toxic effects. However, the interaction of Cd and Zn has been little investigated in the brain. Previously, we reported a protective effect of Zn on mortality caused by Cd in rats. Here, we tested whether the protective effect of Zn could be related to changes in brain Zn-proteins, metallothionein (MT) and δ-aminolevulinate dehydratse (δ-ALA-D). Male adult rats were daily administered for 10 days with Zn (2 mg kg−1), Cd (0.25 and 1 mg kg−1) and 0.25 mg kg−1 of Cd plus Zn and 1 mg kg−1 of Cd plus Zn. The body weight loss, food intake deprivation, and mortality occurred in 1 mg kg−1 of Cd, but Zn co-administration did mitigate these effects. The brain Zn content was not modified by treatment with Cd, whereas cerebral Cd levels increased in animals exposed to Cd. The administration of 0.25 mg kg−1 of Cd (with or without Zn) induced lipid peroxidation and decreased MT concentration, but 2 mg kg−1 of Zn and 1 mg kg−1 of Cd did not change these parameters. Brain δ-ALA-D was not modified by Cd and/or Zn treatments. Since the co-administration of Zn did not attenuate the changes induced by Cd in the brain, our results suggest that the protective effect of Zn on impairments caused by Cd in animal status is weakly related to a cerebral interaction of these metals

    The Remarkable Effect of Potassium Iodide in Eosin and Rose Bengal Photodynamic Action against Salmonella Typhimurium and Staphylococcus aureus

    No full text
    Antimicrobial photodynamic therapy (aPDT) has been shown as a promising technique to inactivate foodborne bacteria, without inducing the development of bacterial resistance. Knowing that addition of inorganic salts, such as potassium iodide (KI), can modulate the photodynamic action of the photosensitizer (PS), we report in this study the antimicrobial effect of eosin (EOS) and rose bengal (RB) combined with KI against Salmonella enterica serovar Typhimurium and Staphylococcus aureus. Additionally, the possible development of bacterial resistance after this combined aPDT protocol was evaluated. The combination of EOS or RB, at all tested concentrations, with KI at 100 mM, was able to efficiently inactivate S. Typhimurium and S. aureus. This combined approach allows a reduction in the PS concentration up to 1000 times, even against one of the most common foodborne pathogenics, S. Typhimurium, a gram-negative bacterium which is not so prone to inactivation with xanthene dyes when used alone. The photoinactivation of S. Typhimurium and S. aureus by both xanthenes with KI did not induce the development of resistance. The low price of the xanthene dyes, the non-toxic nature of KI, and the possibility of reducing the PS concentration show that this technology has potential to be easily transposed to the food industry

    A Lower Serum Antioxidant Capacity as a Distinctive Feature for Women with HER2+ Breast Cancer: A Preliminary Study

    No full text
    The overexpression of HER2 in breast cancer (BC) can contribute to redox imbalance, which is related to damage and structural modification in many biomolecules. To the best of our knowledge, this is the first study that has investigated the infrared spectrum wavenumbers obtained by ATR-FTIR and their relationship with the levels of redox status markers such as reduced glutathione, superoxide dismutase (SOD), catalase, Ferric Reducing Antioxidant Power (FRAP), and protein carbonyl among women with HER2+ BC, HER2− BC, and benign breast disease (BBD). The study was conducted with 25 women, 17 of whom were diagnosed with BC (6 HER2+ and 11 HER2−) and 8 with BBD. Our results indicate HER2+ BC cases could be distinguished from HER2− BC and BBD cases by their serum’s antioxidant capacity [HER2+ BC vs. HER2− BC (AUC = 0.818; specificity = 81.82%; sensitivity = 66.67%); HER2+ BC vs. BBD (AUC = 0.875; specificity = 75%; sensitivity = 83.33%)]. The changes in biochemical terms that occur in serum as a result of the scarcity of antioxidants are related to a peculiar fingerprint in the infrared spectrum obtained by ATR-FTIR. In the serum of women with BBD, the SOD enzyme level is the highest, and this characteristic allowed us to distinguish them from HER2− BC. Finally, data regarding the serological antioxidant capacity of FRAP and the infrared spectrum by ATR-FTIR will allow us to assess biochemical changes that occur before clinical signs, indicating whether changes in therapy or interventions are necessary

    Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA)

    Get PDF
    One of the key challenges in the field of nanoparticle (NP) analysis is in producing reliable and reproducible characterisation data for nanomaterials. This study looks at the reproducibility using a relatively new, but rapidly adopted, technique, Nanoparticle Tracking Analysis (NTA) on a range of particle sizes and materials in several different media. It describes the protocol development and presents both the data and analysis of results obtained from 12 laboratories, mostly based in Europe, who are primarily QualityNano members. QualityNano is an EU FP7 funded Research Infrastructure that integrates 28 European analytical and experimental facilities in nanotechnology, medicine and natural sciences with the goal of developing and implementing best practice and quality in all aspects of nanosafety assessment. This study looks at both the development of the protocol and how this leads to highly reproducible results amongst participants. In this study, the parameter being measured is the modal particle size

    Overweight Women with Breast Cancer on Chemotherapy Have More Unfavorable Inflammatory and Oxidative Stress Profiles

    No full text
    Chronic inflammation and redox imbalance are strongly influenced by diet and nutritional status, and both are risk factors for tumor development. This prospective study aimed to explore the associations between inflammatory and antioxidant markers and nutritional status in women with breast cancer undergoing chemotherapy. The women were evaluated at three times: T0, after the infusion of the first cycle; T1, after infusion of the intermediate cycle; and T2, after the infusion of the last chemotherapy cycle. The consumption of antioxidant nutrients and the Total Dietary Antioxidant Capacity reduced between T0 and T2 and the Dietary Inflammatory Index scores increased throughout the chemotherapy. Blood samples taken at the end of the chemotherapy showed lower levels of glutathione reductase and reduced glutathione, with greater quantification of the transcripts for Interleukin-6 and Tumor Necrosis Factor α. It should be emphasized that the Total Dietary Antioxidant Capacity is lower and the Dietary Inflammatory Index is higher in the group of overweight patients at the end of the follow-up, besides showing lower levels of the redox status, especially the plasma levels of glutathione reductase (p = 0.039). In addition, trends towards higher transcriptional levels of cytokines in peripheral blood were observed more often in overweight women than in non-overweight women. In this study of 55 women with breast cancer, nine (16%) with metastases, diet became more pro-inflammatory with fewer antioxidants during the chemotherapy. Briefly, we have shown that chemotherapy is critical for high-risk overweight women due to their reduced intake of antioxidant nutrients, generating greater inflammatory and oxidative stress profiles, suggesting the adoption of healthier dietary practices by women with breast cancer throughout their chemotherapy
    corecore