29,080 research outputs found
Impact of intrinsic biophysical diversity on the activity of spiking neurons
We study the effect of intrinsic heterogeneity on the activity of a
population of leaky integrate-and-fire neurons. By rescaling the dynamical
equation, we derive mathematical relations between multiple neuronal parameters
and a fluctuating input noise. To this end, common input to heterogeneous
neurons is conceived as an identical noise with neuron-specific mean and
variance. As a consequence, the neuronal output rates can differ considerably,
and their relative spike timing becomes desynchronized. This theory can
quantitatively explain some recent experimental findings.Comment: 4 pages, 5 figure
Finding Galaxy Clusters using Voronoi Tessellations
We present an objective and automated procedure for detecting clusters of
galaxies in imaging galaxy surveys. Our Voronoi Galaxy Cluster Finder (VGCF)
uses galaxy positions and magnitudes to find clusters and determine their main
features: size, richness and contrast above the background. The VGCF uses the
Voronoi tessellation to evaluate the local density and to identify clusters as
significative density fluctuations above the background. The significance
threshold needs to be set by the user, but experimenting with different choices
is very easy since it does not require a whole new run of the algorithm. The
VGCF is non-parametric and does not smooth the data. As a consequence, clusters
are identified irrispective of their shape and their identification is only
slightly affected by border effects and by holes in the galaxy distribution on
the sky. The algorithm is fast, and automatically assigns members to
structures.Comment: 11 pages, 11 figures. It uses aa.cls (included). Accepted by A&
An Electrocorticographic Brain Interface in an Individual with Tetraplegia
Brain-computer interface (BCI) technology aims to help individuals with disability to control assistive devices and reanimate paralyzed limbs. Our study investigated the feasibility of an electrocorticography (ECoG)-based BCI system in an individual with tetraplegia caused by C4 level spinal cord injury. ECoG signals were recorded with a high-density 32-electrode grid over the hand and arm area of the left sensorimotor cortex. The participant was able to voluntarily activate his sensorimotor cortex using attempted movements, with distinct cortical activity patterns for different segments of the upper limb. Using only brain activity, the participant achieved robust control of 3D cursor movement. The ECoG grid was explanted 28 days post-implantation with no adverse effect. This study demonstrates that ECoG signals recorded from the sensorimotor cortex can be used for real-time device control in paralyzed individuals
A Functional Approach to Deconvolve Dynamic Neuroimaging Data.
Positron emission tomography (PET) is an imaging technique which can be used to investigate chemical changes in human biological processes such as cancer development or neurochemical reactions. Most dynamic PET scans are currently analyzed based on the assumption that linear first-order kinetics can be used to adequately describe the system under observation. However, there has recently been strong evidence that this is not the case. To provide an analysis of PET data which is free from this compartmental assumption, we propose a nonparametric deconvolution and analysis model for dynamic PET data based on functional principal component analysis. This yields flexibility in the possible deconvolved functions while still performing well when a linear compartmental model setup is the true data generating mechanism. As the deconvolution needs to be performed on only a relative small number of basis functions rather than voxel by voxel in the entire three-dimensional volume, the methodology is both robust to typical brain imaging noise levels while also being computationally efficient. The new methodology is investigated through simulations in both one-dimensional functions and 2D images and also applied to a neuroimaging study whose goal is the quantification of opioid receptor concentration in the brain.The research of Ci-Ren Jiang is supported in part by NSC 101-2118-M-001-013-MY2 (Taiwan); the research of Jane-Ling Wang is supported by NSF grants, DMS-09-06813 and DMS-12-28369. JA is supported by EPSRC grant EP/K021672/2. The authors would like to thank SAMSI and the NDA programme where some of this research was carried out.This is the final version of the article. It first appeared from Taylor & Francis via http://dx.doi.org/10.1080/01621459.2015.106024
Metabolomic Profiling of Statin Use and Genetic Inhibition of HMG-CoA Reductase
Background Statins are first-line therapy for cardiovascular disease prevention, but their systemic effects across lipoprotein subclasses, fatty acids, and circulating metabolites remain incompletely characterized. Objectives This study sought to determine the molecular effects of statin therapy on multiple metabolic pathways. Methods Metabolic profiles based on serum nuclear magnetic resonance metabolomics were quantified at 2 time points in 4 population-based cohorts from the United Kingdom and Finland (N = 5,590; 2.5 to 23.0 years of follow-up). Concentration changes in 80 lipid and metabolite measures during follow-up were compared between 716 individuals who started statin therapy and 4,874 persistent nonusers. To further understand the pharmacological effects of statins, we used Mendelian randomization to assess associations of a genetic variant known to mimic inhibition of HMG-CoA reductase (the intended drug target) with the same lipids and metabolites for 27,914 individuals from 8 population-based cohorts. Results Starting statin therapy was associated with numerous lipoprotein and fatty acid changes, including substantial lowering of remnant cholesterol (80% relative to low-density lipoprotein cholesterol [LDL-C]), but only modest lowering of triglycerides (25% relative to LDL-C). Among fatty acids, omega-6 levels decreased the most (68% relative to LDL-C); other fatty acids were only modestly affected. No robust changes were observed for circulating amino acids, ketones, or glycolysis-related metabolites. The intricate metabolic changes associated with statin use closely matched the association pattern with rs12916 in the HMGCR gene (R2 = 0.94, slope 1.00 ± 0.03). Conclusions Statin use leads to extensive lipid changes beyond LDL-C and appears efficacious for lowering remnant cholesterol. Metabolomic profiling, however, suggested minimal effects on amino acids. The results exemplify how detailed metabolic characterization of genetic proxies for drug targets can inform indications, pleiotropic effects, and pharmacological mechanisms
Hybrid Focal Stereo Networks for Pattern Analysis in Homogeneous Scenes
In this paper we address the problem of multiple camera calibration in the
presence of a homogeneous scene, and without the possibility of employing
calibration object based methods. The proposed solution exploits salient
features present in a larger field of view, but instead of employing active
vision we replace the cameras with stereo rigs featuring a long focal analysis
camera, as well as a short focal registration camera. Thus, we are able to
propose an accurate solution which does not require intrinsic variation models
as in the case of zooming cameras. Moreover, the availability of the two views
simultaneously in each rig allows for pose re-estimation between rigs as often
as necessary. The algorithm has been successfully validated in an indoor
setting, as well as on a difficult scene featuring a highly dense pilgrim crowd
in Makkah.Comment: 13 pages, 6 figures, submitted to Machine Vision and Application
Heat and fluid flow in a scraped-surface heat exchanger containing a fluid with temperature-dependent viscosity
Scraped-surface heat exchangers (SSHEs) are extensively used in a wide variety of industrial settings where the continuous processing of fluids and fluid-like materials is involved. The steady non-isothermal flow of a Newtonian fluid with temperature-dependent viscosity in a narrow-gap SSHE when a constant temperature difference is imposed across the gap between the rotor and the stator is investigated. The mathematical model is formulated and the exact analytical solutions for the heat and fluid flow of a fluid with a general dependence of viscosity on temperature for a general blade shape are obtained. These solutions are then presented for the specific case of an exponential dependence of viscosity on temperature. Asymptotic methods are employed to investigate the behaviour of the solutions in several special limiting geometries and in the limits of weak and strong thermoviscosity. In particular, in the limit of strong thermoviscosity (i.e., strong heating or cooling and/or strong dependence of viscosity on temperature) the transverse and axial velocities become uniform in the bulk of the flow with boundary layers forming either just below the blade and just below the stationary upper wall or just above the blade and just above the moving lower wall. Results are presented for the most realistic case of a linear blade which illustrate the effect of varying the thermoviscosity of the fluid and the geometry of the SSHE on the flow
Evaluating regional emission estimates using the TRACE-P observations
Measurements obtained during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) experiment are used in conjunction with regional modeling analysis to evaluate emission estimates for Asia. A comparison between the modeled values and the observations is one method to evaluate emissions. Based on such analysis it is concluded that the inventory performs well for the light alkanes, CO, ethyne, SO2, and NOₓ. Furthermore, based on model skill in predicting important photochemical species such as O₃, HCHO, OH, HO₂, and HNO₃, it is found that the emissions inventories are of sufficient quality to support preliminary studies of ozone production. These are important finding in light of the fact that emission estimates for many species (such as speciated NMHCs and BC) for this region have only recently been estimated and are highly uncertain. Using a classification of the measurements built upon trajectory analysis, we compare observed species distributions and ratios of species to those modeled and to ratios estimated from the emissions inventory. It is shown that this technique can reconstruct a spatial distribution of propane/benzene that looks remarkably similar to that calculated from the emissions inventory. A major discrepancy between modeled and observed behavior is found in the Yellow Sea, where modeled values are systematically underpredicted. The integrated analysis suggests that this may be related to an underestimation of emissions from the domestic sector. The emission is further tested by comparing observed and measured species ratios in identified megacity plumes. Many of the model derived ratios (e.g., BC/CO, SOₓ/C₂H₂) fall within ∼25% of those observed and all fall outside of a factor of 2.5. (See Article file for details of the abstract.)Department of Civil and Environmental EngineeringAuthor name used in this publication: Wang, T
- …
