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Abstract
Aims/hypothesis South Asian individuals have an increased
risk of diabetes compared with Europeans that is unexplained
by obesity and traditional or established metabolic measures.
Circulating amino acids (AAs) may provide additional ex-
planatory insights. In a unique cohort of European and South
Asian men, we compared cross-sectional associations be-
tween AAs, metabolic and obesity traits, and longitudinal as-
sociations with incident diabetes.
Methods Nuclear magnetic spectroscopywas used tomeasure
the baseline (1988–1991) levels of nine AAs in serum samples
from a British population-based cohort of 1,279 European and

1,007 South Asian non-diabetic men aged 40–69 years.
Follow-up was complete for 19 years in 801 European and
643 South Asian participants.
Results The serum concentrations of isoleucine, phenylala-
nine, tyrosine and alanine were significantly higher in South
Asian men, while cross-sectional correlations of AAs with
glycaemia and insulin resistance were similar in the two ethnic
groups. However, most AAs were less strongly correlated
with measures of obesity in the South Asian participants. Di-
abetes developed in 227 (35%) South Asian and 113 (14%)
European men. Stronger adverse associations were observed
between branched chain and aromatic AAs and incident
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diabetes in South Asian men. Tyrosine was a particularly
strong predictor of incident diabetes in South Asian individ-
uals, even after adjustment for metabolic risk factors, includ-
ing obesity and insulin resistance (adjusted OR for a 1 SD
increment, 1.47, 95% CI 1.17,1.85, p=0.001) compared with
Europeans (OR 1.10, 0.87, 1.39, p=0.4; p=0.045 for ethnic-
ity×tyrosine interaction).
Conclusions/interpretation Branched chain and aromatic
AAs, particularly tyrosine, may be a focus for identifying
novel aetiological mechanisms and potential treatment targets
for diabetes in South Asian populations and may contribute to
their excess risk of diabetes.

Keywords Amino acids . Cohort . Diabetes . Ethnicity .

European . SouthAsian

Abbreviations
AA Amino acid
IDI Integrated improvement index
Matsuda-IR Matsuda index of insulin resistance
NMR Nuclear magnetic resonance
NRI Net reclassification index
SABRE Southall And Brent REvisited
SHR Sub-hazard ratio

Introduction

The global burden of type 2 diabetes is set to rise exponential-
ly, with the Indian subcontinent predicted to contribute the
greatest increase in the number of people with diabetes by
2030 [1]. South Asian migrant populations also experience a
greater burden of diabetes than their host populations of white
European origin [2, 3]. The causal mechanisms underlying
progression to type 2 diabetes remain poorly understood,
and no study has yet compellingly explained the reasons for
the excess risk of diabetes experienced by South Asian indi-
viduals, suggesting that complex metabolic disturbances may
underlie the ethnic difference [3].

Many recent studies using metabolite profiling in
European-origin populations have suggested five branched
chain and aromatic amino acids (AAs) as predictors of insulin
resistance and the future onset of type 2 diabetes [4–9]. A
combination of three AAs predicted future diabetes in the
Framingham Offspring Study, and this finding was replicated
in an independent prospective cohort and in a random cohort
sample [5]. More recently, a study of over 9,000 Finnish men
revealed that increasing glycaemia was associated with in-
creasing levels of six AAs (alanine, isoleucine, leucine, valine,
phenylalanine and tyrosine) and with decreasing levels of

histidine and glutamine; these AA associations were almost
fully explained by insulin sensitivity [10].

Associations of AA profiles with insulin resistance were
reported in a small cross-sectional study of 263 South Asian
and Chinese men living in Singapore. The findings suggested
that perturbations in AA homeostasis and increased protein
turnover might underlie insulin resistance in these Chinese
and South Asian men [7]. To our knowledge, there is only
one other published study of AA profiles in association with
insulin resistance or diabetes in South Asian individuals [11],
and no studies that provide longitudinal data.

In a population-based cohort of non-diabetic British Euro-
pean and South Asian men followed up for 19 years, we com-
pared by ethnicity nine circulating AAs (isoleucine, leucine,
valine, phenylalanine, tyrosine, alanine, glutamine, glycine
and histidine) in association with markers of insulin resistance
and obesity, both in a cross-sectional analysis and as predic-
tors of incident diabetes. Given the paucity of such studies in
non-European populations, we also attempted a replication in
South Asian men of the widely cited Framingham Offspring
Study [5] with regard to AAs in association with incident
diabetes.

Methods

The SABRE (Southall And Brent REvisited) Study involves a
community-based cohort of European, South Asian and
African-Caribbean origin living in North and West London.
Details of the cohort have been published elsewhere [12].
Participants aged 40–69 years at baseline (1988–1991) were
randomly selected from age- and sex-stratified primary care
physician lists (n=4,063) and workplaces (n=795) in the Lon-
don districts of Southall and Brent. As primary care registra-
tion is free and provides access to all health services in the UK,
this forms a representative and comprehensive sampling
frame. The baseline study was designed to investigate cardio-
metabolic risk in different ethnic groups, primarily in men.
The current analyses are restricted to South Asian and Euro-
pean men recruited to the Southall arm of the study (1988–
1990), due to the availability of stored baseline serum sam-
ples. We excluded those with diabetes at the baseline visit.

All the South Asian participants were migrants originating
from the Indian subcontinent (52% Punjabi Sikh, 20% Hindu,
15% Muslim and 13% other South Asian). Interviewers re-
corded ethnicity on the basis of physical appearance, country
of birth, name and parental origins supplemented with direct
enquiry in cases of doubt. At baseline (1988–1990), the par-
ticipants underwent fasting (morning) blood tests, BP mea-
surements and anthropometry, and completed a health and
lifestyle questionnaire. The questionnaire included the fre-
quency of alcohol consumption and food frequency covering
the major food groups consumed over the previous week.
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Physical activity was assessed by questionnaire, giving a sum-
mary estimate of weekly energy expenditure in daily activities
plus sport, walking, cycling and strenuous activities [13]. An
OGTT was also performed at the baseline visit [12]. Serum
samples from participants attending the Southall study centres
were stored at −80°C.

Deaths were flagged by the Office for National Statistics.
During the period 2008–2011, survivors were invited to par-
ticipate in a follow-up, including health and lifestyle question-
naires, a review of the primary care medical record and/or
clinic attendance at St Mary’s Hospital, London. Clinic at-
tendees fasted overnight and underwent measurements as at
baseline.

All the participants gave their written informed consent.
Approval for the baseline study was obtained from Ealing,
Hounslow and Spelthorne, Parkside and University College
London research ethics committees, and at follow-up from the
St Mary’s Hospital Research Ethics Committee (ref. 07/
H0712/109).

Identifying baseline and incident diabetes The physician’s di-
agnosis or 1999 WHO criteria [14] for fasting and OGTT
blood glucose measurements defined baseline diabetes as an
exclusion criterion. Incident diabetes was identified from a
positive report from at least one of the following sources:

1. A review of the primary care medical record that reported
a diagnosis of diabetes or the prescription of any glucose-
lowering medications

2. The participant questionnaire, with a recall of physician-
diagnosed diabetes together with the year of diagnosis
and/or the receipt of named glucose-lowering medication

3. Clinical follow-up at 20 years with fasting or OGTT plas-
ma glucose results meeting the 1999 WHO criteria [14];
plasma glucose was measured using hexokinase/NADP
methods (Abbott Diagnostics, Maidenhead, UK)

4. A death certificate for the participant.

For the OGTT, plasma glucose and insulin were measured
both at baseline and at follow-up during fasting and at 2 h after
the oral ingestion of 75 g glucose [12]. Hepatic insulin resis-
tance (HOMA-IR) was estimated using the HOMA2 calcula-
tor [15], and the Matsuda index of insulin resistance
(Matsuda-IR=inverse of insulin sensitivity calculated accord-
ing to the methods of Matsuda and DeFronzo [16, 17]) pro-
vided an estimate of whole-body insulin resistance, based on
the glucose and insulin values during fasting and at 2 h after
the OGTT [16, 17].

Other baseline measurements Seated BP was recorded as the
mean of two resting measurements. The participant’s height
was measured using a stadiometer. The waist and hip circum-
ferences were measured using a fibreglass tape with a spring

balance set to a constant tension of 600 g. Harpenden calipers
were used to a standard protocol to measure the skinfold thick-
ness. Subcutaneous truncal fat was estimated by adding to-
gether the subscapular and suprailiac skinfold thicknesses.

AA quantification A high-throughput serum nuclear magnetic
resonance (NMR) platform was used for AA quantification.
The baseline fasting serum samples were stored at −80°C and
thawed overnight in a refrigerator. A proton NMR spectrum
was acquired in which spectral signals from macromolecules
and lipoprotein lipids were suppressed to enhance the detec-
tion of AAs. The levels of nine AAs were quantified (isoleu-
cine, leucine, valine, phenylalanine, tyrosine, alanine, gluta-
mine, glycine and histidine) in mmol/L. The AA profiling has
previously been used in large epidemiological studies [10],
and the methodology has been described in detail elsewhere
[18–20].

Statistical analyses We tabulated baseline conventional risk
factors and the nine measured AAs in non-diabetic partici-
pants for cross-sectional analysis and in those for whom dia-
betes follow-up data were available. We show medians (inter-
quartile ranges) because of the non-normal nature of many of
the distributions. Variables with a non-normal distribution
were natural log-transformed and standardised to 1 SD before
further analysis. The results are presented for individual AAs,
for the three-AA combination (isoleucine, phenylalanine and
tyrosine) and for the five-AA combination (isoleucine, leu-
cine, valine, phenylalanine and tyrosine) [5]. Summary vari-
ables were derived for combinations of AAs according to the
formula: z-score of log X1+z-score of log X2+z-score of log
X3, with Xj denoting the value of the jth AA. All the scores
were thereafter scaled to 1 SD.

We examined the correlations between AAs, markers of
obesity and insulin resistance, and glycaemia at baseline using
non-parametric methods (Spearman’s rho). We tested ethnic
differences in the correlations between AAs and markers of
insulin resistance and obesity using Fisher’s r to z transforma-
tion [21].

Prospective analyses used logistic regression to describe
age-adjusted associations between the AAs as continuous var-
iables and incident diabetes using ethnicity-specific models.
The use of logistic regression for the primary analyses avoided
the loss of cases with missing dates of diagnosis and improved
the comparison with findings of the Framingham Offspring
Study [5]. The associations between AAs and incident diabe-
tes were further tested using quartiles of AA concentrations.
The analyses were adjusted for age together with a group of
prespecified conventional risk factors that had been identified
in our earlier published analyses as important mediators of
ethnic differences in the incidence of diabetes (WHR, truncal
skinfold thickness, Matsuda-IR, smoking and HDL-
cholesterol level) [3]. We further added the self-reported
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number of units of alcohol consumption to this model as al-
cohol consumption has been shown to affect AA levels [22].
We assessed the interactions between ethnicity and each AA
in association with incident diabetes, and examined the effects
of adjustment for AAs and prespecified covariates on the eth-
nic differences in risk of diabetes. For comparability with the
Framingham Offspring Study, model 5 was adjusted for age,
fasting blood glucose and BMI.

We compared the predictive powers of AAs and conven-
tional risk factors for risk of diabetes using the net reclassifi-
cation index (NRI), the integrated improvement index (IDI)
and Harrell’s C statistic [23, 24]. NRI cut-off points of 15%/
30% were selected a priori to reflect the high incidence rates
observed as there are no thresholds for intervention with re-
gard to diabetes risk.

In the sensitivity analyses, we repeated the above analyses
of associations with incident diabetes as follows:

1. Further adjustment of model 4 for the frequency of
meat/fish, dairy and green vegetable consumption and
physical activity, and for serum creatinine as a marker of
renal function

2. Separate analyses for the three largest South Asian sub-
groups (the Sikh [52%], Hindu [20%] and Muslim [15%]
groups)

3. The use of competing risks regression (where the compet-
ing risk was death from other causes) based on Fine and
Gray’s proportional subhazards methods [25].

Statistical significance was defined as p<0.05. We did not
apply a correction for multiple testing as the associations be-
tween the AAs and glycaemic risk factors and risk of diabetes
are established in populations of European origin [5, 8, 10,
26]. Statistical analyses were conducted using Stata v13 sta-
tistical software (StataCorp, College Station, TX, USA).

Results

Of 1,515 European and 1,419 South Asian male study partic-
ipants from the Southall study centres, 1,423 (94%) and 1,111
(78%), respectively, did not have diabetes at baseline and were
included in this study. Serum samples were available for 1,279
European men and 1,007 South Asian men, of whom 801
(63%) Europeans and 643 (64%) South Asians had known
follow-up information for diabetes status (electronic supple-
mentary material [ESM] Fig. 1).

Baseline cross-sectional analyses (Southall centre: 1988–
1990) South Asian men were more insulin resistant and more
had diagnosed hypertension compared with European men.
They were more centrally obese but had lower a BMI. They

were less physically active, consumed less alcohol and
smoked less. They also reported a lower consumption of meat,
fish and dairy products (Table 1). The serum concentrations of
isoleucine, phenylalanine, tyrosine and alanine were signifi-
cantly higher in South Asian men (Table 2). The findings were
almost identical in those with and without information on
diabetes status at follow-up. No participants were receiving
lipid-lowering medications at baseline. Among the South
Asian men, the concentrations of branched chain AAs and
histidine were higher in Muslims than in Sikhs or Hindus,
while the glutamine and glycine concentrations were higher
in the Hindu than the Sikh or Muslim participants; however,
the ethnic differences in AA levels compared with Europeans
were maintained regardless of the South Asian subgroup.

Positive and significant correlations with markers of
glycaemia and insulin resistance were observed for isoleucine,
leucine, valine, phenylalanine, tyrosine and alanine in both
ethnic groups. The correlations were non-significantly weaker
between AAs and glycaemia and insulin resistance in South
Asian men. Histidine was weakly positively correlated with
measures of glycaemia and insulin resistance, and glycine and
glutamine were negatively correlated in both ethnic groups.
Most AAs were less strongly correlated with obesity measures
in South Asian men (significantly so for branched chain AAs
and alanine) (Table 3).

Prospective analyses: AAs and incident diabetes (1988–
2011) The median duration of follow-up was 19 years. Dia-
betes developed in 227 South Asian men (35%) and 113 Eu-
ropean men (14%). The median (interquartile range) number
of years from baseline to the development of diabetes was 15
(11, 18) in Europeans and 14 (9, 18) in South Asians (p=
0.075), and the median (interquartile range) age at diagnosis
of diabetes was 67 (60, 71) years in the European participants
and 62 (57, 68) years in the South Asian participants
(p<0.0002).

In logistic regression analyses adjusted only for age, all
AAs and AA combinations were associated with incident di-
abetes in both ethnic groups (Table 4, model 1), with the
exception of phenylalanine, glutamine and histidine in Euro-
pean men and glycine in South Asian men. Similar results
were obtained when the AAs were analysed in quartiles (see
ESM Table 1). Multivariable analyses for the European men
showed that, with the exception of glycine and isoleucine, all
linear associations (per SD log-transformed AA level) were
markedly attenuated following adjustments for obesity and
further attenuated on adjustment for insulin resistance and
other conventional risk factors (Table 4, models 2–5). Positive
associations between incident diabetes and individual AAs
and the three- and five-AA combinations were generally more
marked in South Asian individuals and only partially attenu-
ated on adjustment for obesity measures and fasting glucose
levels (Table 4, models 2 and 5).
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Additional adjustment for Matsuda-IR, smoking and HDL-
cholesterol level and then alcohol consumption resulted in
further attenuation for branched chain AAs, phenylalanine,
alanine, glutamine and histidine (models 3 and 4). However,
the association for tyrosine was particularly marked among
the South Asian participants even after full adjustment (fully
adjusted OR for a 1 SD increment in the log-transformed
level: 1.47 [1.17, 1.85] vs Europeans: 1.10 [0.87, 1.39]; eth-
nicity×tyrosine interaction p=0.045 (fully adjusted)). Similarly,
the three- and five-AA combinations of isoleucine, leu-
cine, valine, phenylalanine and tyrosine were also more

strongly associated with incident diabetes in South Asian par-
ticipants (fully adjusted ORs [model 4]: South Asians: 1.32
[1.04, 1.68] and 1.31[1.04, 1.66] vs European participants:
1.03 [0.82, 1.29] and 1.05 [0.84, 1.30]), with weak evidence
of ethnicity interactions (p=0.10 and 0.13, respectively)
(Table 4, model 4). Glycine was negatively associated with
incident diabetes in European but not in South Asian men
(interaction p=0.06).

Comparisons with the Framingham Offspring Study are
shown following adjustment for age, fasting glucose level
and BMI (Table 4, model 5). In European men, the model 5

Table 1 Baseline characteristics of European and South Asian men without baseline diabetes

Baseline characteristics All with stored baseline serum (included
in cross-sectional analyses)

All with stored baseline serum and data
regarding diabetes status at follow-up
(included in prospective analyses)

European South Asian p values
for ethnic
difference

European South Asian p values
for ethnic
difference

Number of individuals 1,279 1,007 801 643

Age, mean±SD 52.9±7.3 50.6±7.0 <0.001 52.6±7.2 50.6±7.0 <0.001

Fasting glucose (mmol/l) 5.36 (5.04, 5.69) 5.46 (5.09, 5.83) <0.001 5.36 (5.03, 5.71) 5.45 (5.06, 5.82) <0.001

2 h glucose (mmol/l) 4.85 (4.04, 5.66) 5.34 (4.50, 6.20) <0.001 4.86 (4.04, 5.72) 5.27 (4.45, 6.08) <0.001

Fasting insulin (pmol/l) 50.00 (33.34, 72.23) 69.80 (47.92, 98.62) <0.001 51.39 (34.03, 73.62) 69.10 (47.92, 98.62) <0.001

2 h insulin (pmol/l) 134.04 (79.87,
234.05)

274.67 (158.35,
504.90)

<0.001 141.68 (33.34,
235.44)

275.37 (159.74,
497.26)

<0.001

HDL-cholesterol (mmol/l) n=1,272
1.24 (1.05, 1.48)

n=1,000
1.15 (0.98, 1.35)

<0.001 n=795
1.24 (1.06, 1.48)

n=640
1.15 (0.99, 1.37)

<0.001

Triacylglycerols (mmol/l) 1.43 (1.02, 2.09) 1.71 (1.15, 2.51) <0.001 1.36 (0.99, 2.0) 1.60 (1.09, 2.31) <0.001

Serum creatinine (μmol/l) 60.37 (54.60, 67.24) 57.47 (51.43, 64.03) <0.001 60.79 (55.0, 67.79) 57.47 (51.78, 63.15) <0.001

HOMA-IR 0.8 (0.5, 1.2) 1.1 (0.8, 1.6) <0.001 0.8 (0.6, 1.2) 1.1 (0.8, 1.6) <0.001

Matsuda-IR 0.20 (0.13, 0.32) 0.35 (0.22, 0.58) <0.001 0.21 (0.13, 0.33) 0.35 (0.22, 0.57) <0.001

Waist circumference (cm) 90.9 (84.5, 97.7) 92.1 (86.1, 98.5) 0.02 90.6 (84.7, 97.5) 91.5 (85.7, 97.6) 0.06

WHR 0.94 (0.90, 0.98) 0.98 (0.93, 1.02) <0.001 0.94 (0.90, 0.98) 0.98 (0.93, 1.02) <0.001

Truncal skinfold thickness (cm) 3.7 (2.9, 4.7) 4.5 (3.7, 5.5) <0.001 3.7 (2.9, 4.7) 4.5 (3.7, 5.7) <0.001

BMI (kg/m2) 25.65 (23.68, 27.96) 25.46 (23.50, 27.53) 0.03 25.63 (23.69, 27.78) 25.28 (23.30, 27.23) 0.05

Systolic BP (mmHg) 121 (111, 132) 122 (112, 133) 0.04 119 (110, 132) 121 (112, 133) 0.02

Treated hypertension 103 (8) 117 (12) 0.004 63 (8) 81 (13) 0.003

Smoking, never/ex/current (%) 26/41/33 74/9/16 <0.001 28/40/32 74/10/16 <0.001

Alcohol (units per week) n=1,244
11 (3, 23)

n=969
3 (0, 15)

<0.001 n=774
12 (3, 24)

n=619
3 (0, 14)

<0.001

Meat and fish consumption during
previous 7 days, quartiles of
frequency, lowest to highest (%)

4/15/40/41 35/26/25/13 <0.0001 3/14/40/42 36/26/24/15 <0.0001

Dairy product consumption during
previous 7 days, none/1
day/2–3 days/most days (%)

2/4/11/83 7/8/19/66 <0.0001 2/4/11/83 6/6/20/67 <0.0001

Green vegetable consumption during
previous 7 days, none/1
day/2–3 days/most days (%)

7/7/32/54 4/8/35/53 0.017 6/7/31/56 4/8/36/51 0.057

Physical activity (kJ×103/week) 11 (7, 16) 9 (5, 13) <0.001 11 (7, 16) 9 (5, 13) <0.001

Education (years) 10 (9, 11) 12 (10, 15) <0.001 10 (9, 11) 12 (10, 15) <0.001

Data are median (interquartile range), n (%) unless otherwise stated
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Table 2 Baseline AA levels of European and South Asian men (all without baseline diabetes)

Amino acids (mmol/l) All with stored baseline serum (included in
cross-sectional analyses)

All with stored baseline serum and data regarding
diabetes status at follow-up (included in prospective
analyses)

Baseline characteristics European South Asian p values
for ethnic
difference

European South Asian p values
for ethnic
difference

Number 1,279 1,007 801 643

Isoleucine 0.057 (0.050, 0.066) 0.060 (0.052, 0.068) <0.0001 0.058 (0.050, 0.066) 0.060 (0.052, 0.068) 0.002

Leucine 0.091 (0.080, 0.11) 0.093 (0.083, 0.11) 0.17 0.092 (0.081, 0.11) 0.092 (0.083, 0.10) 0.8

Valine 0.179 (0.158, 0.202) 0.178 (0.156, 0.199) 0.17 0.180 (0.158, 0.204) 0.176 (0.155, 0.198) 0.017

Phenylalanine 0.092 (0.084, 0.10) 0.094 (0.086, 0.10) 0.019 0.092 (0.084, 0.10) 0.094 (0.085, 0.10) 0.12

Tyrosine 0.054 (0.048, 0.061) 0.060 (0.053, 0.067) <0.0001 0.054 (0.048, 0.061) 0.059 (0.052, 0.067) <0.0001

Isoleucine, phenylalanine,
tyrosine combined

0.205 (0.186, 0.2228) 0.213 (0.197, 0.234) <0.0001 0.205 (0.186, 0.228) 0.213 (0.197, 0.233) <0.0001

Alanine 0.326 (0.290, 0.365) 0.335 (0.301, 0.375) <0.0001 0.328 (0.290, 0.367) 0.335 (0.302, 0.374) 0.001

Glutamine 0.384 (0.257, 0.448) 0.410 (0.309, 0.471) <0.0001 0.385 (0.262, 0.450) 0.415 (0.317, 0.473) <0.0001

Glycine n=1,267
0.288 (0.262, 0.318)

n=998
0.282 (0.256, 0.311)

0.006 n=794
0.287 (0.262, 0.316)

n=638
0.282 (0.257, 0.312)

0.10

Histidine 0.077 (0.069, 0.088) 0.078 (0.070, 0.089) 0.3 0.077 (0.068, 0.088) 0.078 (0.070, 0.090) 0.14

Data are median (interquartile range)

Table 3 Correlations between AAs and markers of glycaemia/insulin resistance and obesity at baseline in non-diabetic men

Spearman’s ρa European men
(n=1,279)
South Asian
men (n=1,007)

Fasting
glucose

2 h
glucose

Fasting
insulin

2 h
insulin

HOMA-IR Matsuda-IR WHR Waist
circumference

BMI Truncal skinfold
thickness

Isoleucine European men 0.16 0.12 0.35 0.28 0.35 0.34 0.30 0.34 0.31 0.32

South Asian men 0.13 0.13 0.34 0.32 0.34 0.36 0.21b 0.25b 0.23b 0.30

Leucine European men 0.18 0.10 0.30 0.20 0.31 0.27 0.23 0.27 0.27 0.29

South Asian men 0.14 0.07 0.26 0.21 0.26 0.25 0.14b 0.19b 0.18b 0.25

Valine European men 0.18 0.14 0.32 0.23 0.33 0.30 0.23 0.28 0.29 0.31

South Asian men 0.15 0.12 0.26 0.27 0.27 0.29 0.13b 0.19b 0.22 0.29

Phenylalanine European men 0.19 0.13 0.24 0.18 0.25 0.23 0.26 0.25 0.22 0.21

South Asian men 0.09 0.11 0.21 0.18 0.21 0.22 0.22 0.22 0.15 0.20

Tyrosine European men 0.22 0.11 0.36 0.26 0.36 0.33 0.32 0.35 0.34 0.31

South Asian men 0.23 0.14 0.29 0.24 0.30 0.30 0.30 0.35 0.30 0.27

Alanine European men 0.27 0.12 0.34 0.23 0.35 0.31 0.20 0.24 0.23 0.22

South Asian men 0.24 0.15 0.27 0.20 0.29 0.27 0.17 0.16b 0.17 0.23

Glutamine European men −0.11 −0.09 −0.18 −0.07 −0.18 −0.14 −0.11 −0.12 −0.12 −0.16
South Asian men −0.07 −0.03a −0.17 −0.04a −0.17 −0.10 −0.08 −0.08 −0.07 −0.15

Glycine European men
(n=1,267)

0.04a −0.0a −0.07 −0.10 −0.05 −0.09 −0.09 −0.10 −0.11 −0.05

South Asian men
(n=998)

0.03a 0.003a −0.06a −0.09 −0.06a −0.08 −0.08 −0.11 −0.15 −0.01a

Histidine European men 0.08 0.08 0.11 0.04a 0.10 0.09 0.03a 0.07 0.07 0.14

South Asian men 0.07a 0.03a 0.04a 0.01a 0.04a 0.03a 0.01a 0.02a 0.02a 0.16

a p values for correlations within ethnic group were <0.05, unless marked a

b p values for ethnic group difference in correlation coefficient <0.05
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Table 4 Associations between AAs and incident diabetes

OR per SD log-transformed
AA concentration

European men p values South Asian men p values p values for interaction
ethnicity×AA

Isoleucine Model 1 1.48 (1.20, 1.83) 3×10−4 1.58 (1.30, 1.93) 5×10−6 0.7

Model 2 1.27 (1.02, 1.58) 0.032 1.34 (1.10, 1.65) 0.004 0.6

Model 3 1.09 (0.94, 1.00) 0.5 1.22 (0.98, 1.51) 0.069 0.7

Model 4 1.09 (0.87, 1.38) 0.4 1.19 (0.95, 1.48) 0.13 0.6

Model 5 1.21 (0.97, 1.51) 0.089 1.42 (1.16, 1.75) 0.001 0.3

Leucine Model 1 1.30 (1.10, 1.55) 0.003 1.50 (1.23, 1.82) 6×10−5 0.3

Model 2 1.19 (0.99, 1.43) 0.071 1.34 (1.10, 1.65) 0.004 0.4

Model 3 1.09 (0.88, 1.34) 0.4 1.31 (1.06, 1.62) 0.014 0.2

Model 4 1.10 (0.89, 1.35) 0.4 1.22 (0.98, 1.52) 0.074 0.3

Model 5 1.11 (0.92, 1.35) 0.3 1.36 (1.11, 1.68) 0.004 0.17

Valine Model 1 1.29 (1.06, 1.58) 0.013 1.53 (1.26, 1.84) 1×10−5 0.2

Model 2 1.12 (0.90, 1.38) 0.3 1.35 (1.11, 1.64) 0.003 0.2

Model 3 1.02 (0.81, 1.28) 0.9 1.24 (1.01, 1.54) 0.044 0.3

Model 4 1.00 (0.80, 1.27) 0.9 1.24 (1.00, 1.54) 0.052 0.3

Model 5 1.04 (0.84, 1.29) 0.7 1.32 (1.08, 1.62) 0.007 0.14

Phenylalanine Model 1 1.13 (0.93, 1.37) 0.2 1.36 (1.12, 1.64) 0.002 0.19

Model 2 1.00 (0.82, 1.22) 1.0 1.19 (0.98, 1.45) 0.076 0.2

Model 3 0.91 (0.74, 1.11) 0.4 1.12 (0.91, 1.37) 0.3 0.2

Model 4 0.91 (0.74, 1.12) 0.4 1.08 (0.88, 1.33) 0.5 0.2

Model 5 0.97 (0.80, 1.18) 0.8 1.29 (1.06, 1.57) 0.011 0.054

Tyrosine Model 1 1.44 (1.17, 1.76) 5×10−4 1.92 (1.57, 2.35) 3×10−10 0.049

Model 2 1.22 (0.98, 1.51) 0.071 1.66 (1.33, 2.03) 5×10−6 0.053

Model 3 1.07 (0.85, 1.35) 0.6 1.55 (1.24, 1.93) 1×10−4 0.038

Model 4 1.10 (0.87, 1.39) 0.4 1.47 (1.17, 1.85) 0.001 0.045

Model 5 1.11 (0.90, 1.39) 0.3 1.56 (1.26, 1.93) 5×10−5 0.047

Alanine Model 1 1.27 (1.03, 1.55) 0.022 1.45 (1.20, 1.75) 1×10−4 0.3

Model 2 1.13 (0.91, 1.39) 0.3 1.31 (1.08, 1.59) 0.005 0.3

Model 3 1.06 (0.85, 1.33) 0.6 1.21 (0.99, 1.49) 0.057 0.5

Model 4 1.12 (0.89, 1.40) 0.3 1.15 (0.94, 1.42) 0.17 0.8

Model 5 1.03 (0.84, 1.28) 0.8 1.25 (1.03, 1.51) 0.025 0.2

Glutamine Model 1 0.91 (0.76, 1.09) 0.3 0.82 (0.70, 0.97) 0.022 0.4

Model 2 0.96 (0.79, 1.16) 0.6 0.86 (0.73, 1.03) 0.10 0.4

Model 3 0.98 (0.80, 1.19) 0.8 0.85 (0.71, 1.03) 0.091 0.2

Model 4 0.94 (0.77, 1.15) 0.5 0.94 (0.77, 1.14) 0.5 0.4

Model 5 0.94 (0.77, 1.15) 0.6 0.88 (0.73, 1.05) 0.15 0.6

Glycine Model 1 0.77 (0.63, 0.93) 0.007 0.95 (0.80, 1.12) 0.5 0.10

Model 2 0.78 (0.64, 0.96) 0.016 0.98 (0.82, 1.17) 0.8 0.11

Model 3 0.75 (0.61, 0.93) 0.010 0.99 (0.82, 1.20) 0.9 0.047

Model 4 0.76 (0.61, 0.94) 0.011 0.98 (0.81, 1.19) 0.8 0.058

Model 5 0.78 (0.64, 0.96) 0.019 0.96 (0.80, 1.15) 0.7 0.13

Histidine Model 1 0.98 (0.82, 1.18) 0.8 1.19 (0.99, 1.43) 0.062 0.15

Model 2 0.94 (0.78, 1.15) 0.6 1.16 (0.96, 1.41) 0.13 0.15

Model 3 0.93 (0.75, 1.15) 0.5 1.20 (0.98, 1.46) 0.084 0.077

Model 4 0.93 (0.75, 1.15) 0.6 1.15 (0.93, 1.42) 0.2 0.10

Model 5 0.92 (0.75, 1.12) 0.4 1.13 (0.93, 1.38) 0.2 0.14

Isoleucine, phenylalanine, tyrosine Model 1 1.39 (1.14, 1.69) 0.001 1.85 (1.50, 2.29) 1×10−8 0.051

Model 2 1.18 (0.95, 1.46) 0.13 1.54 (1.23, 1.92) 1×10−4 0.083

Model 3 1.02 (0.81, 1.27) 0.9 1.39 (1.10, 1.75) 0.001 0.096
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adjusted ORs per 1 SD increment in the log-transformed
three-AA (isoleucine, phenylalanine and tyrosine) and five-
AA (isoleucine, leucine, valine, phenylalanine and tyrosine)
combinations were virtually identical and weak: 1.10 (0.89,
1.36) and 1.10 (0.89, 1.35). In contrast, the ORs were greater
in South Asian men (1.57 [1.26, 1.96] and 1.52 [1.22, 1.89],
respectively; Table 4, model 5). In South Asian men, the ORs
for the upper vs lowest quartile were 3.11 (1.71, 5.67) and
2.55 (1.46, 4.48) for the three- and five-AA combinations,
respectively, with evidence of linear associations. The corre-
sponding categorical associations for Europeans were weaker
(ORs for the upper vs lower quartile 1.99 [1.07, 3.67] and 1.98
[1.05, 3.76], respectively) (ESM Table 1, model 5).

In aiming to predict incident diabetes, no improvements in
the C statistic, NRI or IDI were observed in European men on
the addition of tyrosine or either the three- or five-AA combi-
nation to models containing prespecified conventional risk
factors. However, in South Asian men, the IDI and NRI sig-
nificantly improved with the addition of tyrosine, although
only discrimination (IDI) significantly improved with the ad-
dition of the three- and five-AA combinations (ESM Table 2).

Prospective analyses: AAs and ethnic differences in incidence
of diabetes In age-adjusted models, South Asian men had a
3.18-fold (95% CI 2.46, 4.12, p=1.5×10−18) greater risk of
developing diabetes than European men (Fig. 1). Additional
adjustment for baseline tyrosine level reduced the ethnic dif-
ference in risk of diabetes to the greatest extent (OR 2.64
[2.02, 3.44]; 17% reduction). Adjustment for the prespecified
combination of conventional risk factors reduced the ethnic
OR to 2.10 (1.56, 2.82). Further adjustment for AAs modestly
altered the ethnic difference in risk of diabetes; the addition of
tyrosine to the full model led to the largest reduction in OR, to
1.99 (1.48, 2.69; 5% reduction) (Fig. 1).

Sensitivity analyses Sensitivity analyses that included adjust-
ment for diet, physical activity or serum creatinine, or exclud-
ed participants with impaired fasting glucose or impaired glu-
cose tolerance, produced similar results to those reported
above. There were no significant age-adjusted interactions
between the main South Asian subgroups (Punjabi Sikh, Hin-
du andMuslim) and AAs in association with incident diabetes
(all interaction p values >0.10).

Prospective analyses using competing risks regression re-
sulted in the loss of 23 cases of incident diabetes without dates
of diagnosis, but demonstrated similar ethnic differences in
the incidence of diabetes (age-adjusted subhazard ratio
[SHR] for South Asian vs European participants 2.90 [2.33,
3.61]), which were again most markedly attenuated on the
addition of baseline tyrosine (SHR 2.52 [2.00, 3.20]). Com-
peting risks regression also demonstrated similar associations
between AAs and incident diabetes, for example the age-
adjusted SHR per SD log-transformed tyrosine in Europeans
of 1.31 (1.05, 1.64) and in South Asians of 1.65 (1.44, 1.89).

Discussion

We report novel ethnicity-specific data regarding the associa-
tions between AAs and incident diabetes in over 19 years of
follow-up. We demonstrate significant positive associations
between baseline branched chain AAs, tyrosine and alanine
and incident diabetes in middle-aged European men in accord
with previous studies [4–9, 27]. In South Asian men, the same
AAs, plus phenylalanine, were more strongly associated with
incident diabetes compared with Europeans. In European
men, obesity and insulin resistance, together with age,
smoking, HDL-cholesterol level and alcohol consumption
partially or completely accounted for the majority of

Table 4 (continued)

OR per SD log-transformed
AA concentration

European men p values South Asian men p values p values for interaction
ethnicity×AA

Model 4 1.03 (0.82, 1.29) 0.8 1.32 (1.04, 1.68) 0.022 0.10

Model 5 1.10 (0.89, 1.36) 0.4 1.57 (1.26, 1.96) 5×10−5 0.029

Branched chain + aromatic AAs Model 1 1.36 (1.13, 1.65) 0.001 1.79 (1.45, 2.20) 5×10−8 0.061

Model 2 1.18 (0.96, 1.45) 0.11 1.51 (1.21, 1.87) 1×10−5 0.10

Model 3 1.04 (0.83, 1.29) 0.8 1.38 (1.10, 1.73) 0.006 0.12

Model 4 1.05 (0.84, 1.30) 0.7 1.31 (1.04, 1.66) 0.023 0.13

Model 5 1.10 (0.89, 1.35) 0.4 1.52 (1.22, 1.89) 2×10−4 0.040

Model 1: adjusted for age

Model 2: adjusted for age, WHR and truncal skinfold thickness

Model 3: adjusted for age, WHR, truncal skinfold thickness, Matsuda-IR, HDL-cholesterol level and current smoking

Model 4: model 3 plus alcohol consumption

Model 5: adjusted for age, fasting glucose level and BMI (for comparison with the Framingham Offspring Study [5])
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associations between AAs incident diabetes. In contrast, in
South Asian men, the adverse associations were, with the
exception of phenylalanine, generally only moderately atten-
uated on adjustment for insulin resistance, smoking, HDL-
cholesterol, alcohol intake and creatinine level, and remained
statistically significant. Tyrosine and the combination of
branched chain and aromatic AAs were particularly strongly
associated with incident diabetes even after multivariable ad-
justment in South Asian men. Adjustment for tyrosine made a
small (approximately 5%) contribution to explaining the eth-
nic difference in the incidence of diabetes.

Cross-sectional associations at baseline between AAs and
markers of insulin resistance and glycaemia generally follow-
ed the patterns observed for incident diabetes, with the excep-
tion of histidine, which was minimally associated with
markers of insulin resistance in South Asian men. Associa-
tions between branched chain AAs and obesity, although pres-
ent, were weaker in South Asian than European participants.
The latter findings, together with the weaker attenuation of
AA associations with incident diabetes, suggest that conven-
tional measures may not capture the best indicators of diabetes
risk in South Asian individuals.

Comparison with other studies Although it did not have Eu-
ropean comparators and was only a small cross-sectional analy-
sis, the study by Tai et al [7] reported strong associations in
South Asian and Chinese men of relatively low body weight
between insulin resistance and branched chain and aromatic
AAs and for a combination of isoleucine, leucine, phenylala-
nine, tyrosine and methionine. These associations were inde-
pendent of dietary protein intake and BMI [7]. This is

compatible with our cross-sectional finding of weaker associ-
ations between obesity and branched chain AAs in South
Asian men, suggesting that increases in these AA levels may
be driven by insulin resistance to a greater extent than obesity
in South Asian individuals or that measures of obesity may be
less satisfactory in this population.

Another small cross-sectional study in younger (age 35–
45 years) Indian Asians living in India found strong correla-
tions between isoleucine, leucine and phenylalanine and obe-
sity in people with a high BMI both with and without type 2
diabetes, and lower correlations in those with a low BMI and
no diabetes [11]. There was no comparator group, so we can-
not compare the relative strength of the correlations. However,
these findings are not inconsistent with ours, in that we also
found significant correlations between branched chain and
aromatic amino acids and measures of obesity, albeit weaker
in the South Asian than in the European participants.

The findings of the Framingham Offspring Study for three
AAs and for five AAs in the lower risk random cohort sample
adjusted for age, fasting glucose level and BMI are compara-
ble with our findings for European men for the upper vs lower
quartiles of AA levels (although the linear association is at-
tenuated), but they somewhat understate the associations ob-
served in the higher risk South Asian men in our study [5]. We
had anticipated that the findings in the European and South
Asian participants in the SABRE Study would most closely
resemble the Framingham random cohort. European SABRE
participants had comparable baseline levels of glucose, insulin
and obesity, but were younger, were less likely to be hyper-
tensive and had lower triacylglycerol levels, perhaps
explaining the somewhat weaker associations of AAs with

Unadjusted
Age
Isoleucinea

Leucinea

Valinea

Phenylalaninea

Tyrosinea

Isoleucine, phenylalanine, tyrosinea

Isoleucine, leucine, valine, phenylalanine, tyrosinea

Alaninea

Glutaminea

Glycinea

Histidinea

Age, WHR, truncal skinfold, Matsuda-IR, HDL-C, smoking
Isoleucineb

Leucineb

Valineb

Phenylalanineb

Tyrosineb

Isoleucine, phenylalanine, tyrosineb

Isoleucine, leucine, valine, phenylalanine, tyrosineb

Alanineb

Glutamineb

Glycineb

Histidineb

OR adjusted for:

3.32 (2.57, 4.28)
3.18 (2.46, 4.12)
3.11 (2.39, 4.04)
3.36 (2.58, 4.36)
3.44 (2.65, 4.48)
3.17 (2.45, 4.11)
2.64 (2.02, 3.44)
2.95 (2.27, 3.83)
3.18 (2.45, 4.13)
3.10 (2.39, 4.02)
3.32 (2.55, 4.31)
3.17 (2.44, 4.11)
3.20 (2.47, 4.14)
2.10 (1.56, 2.82)
2.14 (1.59, 2.89)
2.19 (1.63, 2.96)
2.20 (1.63, 2.99)
2.10 (1.56, 2.83)
1.99 (1.48, 2.69)
2.10 (1.56, 2.83)
2.16 (1.60, 2.91)
2.10 (1.56, 2.83)
2.18 (1.61, 2.94)
2.11 (1.57, 2.84)
2.10 (1.56, 2.83)

OR (95% CI)

1 2 3 4

Fig. 1 ORs for ethnic differences
in the incidence of diabetes in
South Asian vs European men,
adjusted for age and AAs, and for
conventional risk factors and
AAs. aAdjusted for age plus each
AA or combination in turn.
bAdjusted for age, WHR, truncal
skinfold thickness, Matsuda-IR,
HDL-cholesterol (HDL-C) level
and current smoking, plus each
AA or combination in turn
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incident diabetes compared with those observed in the Fra-
mingham random cohort. South Asian SABRE participants,
who were also younger, were more centrally obese and had
higher fasting glucose and insulin levels, but experienced sim-
ilar triacylglycerol levels and less hypertension than the Fra-
mingham random cohort. Associations between AAs and in-
cident diabetes in South Asian individuals more closely re-
sembled the stronger associations seen in the Framingham
replication cohort (Malmo Diet and Cancer cohort [28]) and
Framingham high-risk propensity matched cases and controls,
despite having markedly lower overall obesity (BMI) than the
latter group [5].

Possible mechanisms Branched chain and aromatic AAs have
been associated with insulin-resistant states, including diabe-
tes, in many other studies in populations of mostly European
origin [4, 5, 7, 9, 27]. Potential mechanisms include altered
AA metabolism in the liver, kidneys, muscle or adipose tissue
[29–31]. Serum creatinine as a marker of renal function did
not explain associations between AAs and incident diabetes,
nor did adjustment for alcohol intake, althoughwe did not have
other baselinemeasures of liver function. Two recent studies in
European adults suggest that altered branched chain and aro-
matic AA metabolism is associated with impaired insulin sen-
sitivity prior to the development of hyperglycaemia [26, 32].
South Asian individuals have lower muscle mass and more
hepatic fat than Europeans [33–36]. Abdominal adipose tissue
in South Asian individuals contains larger and more dysfunc-
tional adipocytes [37]. It has also been suggested that increased
AA levels may result from increased protein turnover in asso-
ciation with increased central obesity and reduced lean body
mass [7]; this is a plausible, but untested, explanation for the
increased levels of isoleucine, tyrosine, alanine and glutamine
seen in our more centrally obese South Asian men.

It is not clear why associations between branched chain
AAs and tyrosine and incident diabetes should be stronger in
South Asian men. It is possible that this relates simply to the
higher risk of baseline diabetes, but it is also possible that AA
perturbations become more severe with a greater degree and/
or longer duration of insulin resistance.

It is notable that tyrosine levels were substantially higher in
the South Asian men, whereas ethnic differences in other AA
levels were less marked. This suggests that higher tyrosine
levels may not be due solely to increased insulin resistance
in South Asian individuals.

There were no significant differences in the associations
between AAs and incident diabetes between the South Asian
subgroups, who traditionally have different dietary practices,
Hindus being mostly vegetarian and Muslims being omnivo-
rous (non-pork) eaters, while Punjabi Sikhs have few dietary
restrictions. Only five Muslim participants attended the base-
line studies during Ramadan fasting. Although adjustment for
self-reported dietary intake did not affect the associations

betweenAAs and incident diabetes, studies of the associations
between dietary intake and AA levels have shown large diur-
nal and circadian variations and highly variable individual
responses to different dietary components [38–42]. Further
research is needed to understand the role of diet in the rela-
tionship between serum AA levels and risk of diabetes.

Strengths and limitations This is the first population-based
study on AA profiles with a large number of South Asian
migrants and native Europeans conducted in the same setting
and with a lengthy follow-up. However, the study was con-
ducted only in middle-aged men and the findings may not
apply to women or other age groups.

Loss to follow-up occurred in approximately one-third of
the participants, and while the baseline characteristics of the
whole study group and those with follow-up data only were
almost identical, it is likely that those lost to follow-up would
be more at risk of developing diabetes and have more adverse
outcomes, leading to a possible underestimation of the asso-
ciations between AAs and incident diabetes. However, loss to
follow-up did not differ by ethnicity, and it is unlikely that the
strengths of the associations within ethnic groups would differ
in those lost to follow-up.

We did not have baseline measures of hepatic function;
hence we could not explore hepatic effects on AA levels and
associations.

In addition, many associations have been compared within
and between ethnic groups, and although the trends are con-
sistent with previously published results in European popula-
tions, caution is needed in interpreting multiple comparisons.

Finally, comparisons of AA associations with incident di-
abetes within and between South Asian subgroups are based
on small numbers and should be interpreted with caution.

Summary and conclusions Higher levels of isoleucine, phenyl-
alanine, tyrosine, alanine and glutamine were observed in
South Asianmen. The associations between AAs andmeasures
of obesity were generally less marked in the South Asian men.
Levels of branched chain and aromatic AAs, particularly tyro-
sine, were adversely associated with incident diabetes to a
greater extent in South Asian than in European men, even after
adjustment for previously established risk factors, including
insulin resistance and obesity. These findings suggest that
higher branched chain and aromatic AAs, particularly tyrosine,
may be a focus for identifying novel aetiological mechanisms
and potential treatment targets for diabetes in South Asian in-
dividuals and may contribute to their excess risk of diabetes.
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