493 research outputs found

    An Electrocorticographic Brain Interface in an Individual with Tetraplegia

    Get PDF
    Brain-computer interface (BCI) technology aims to help individuals with disability to control assistive devices and reanimate paralyzed limbs. Our study investigated the feasibility of an electrocorticography (ECoG)-based BCI system in an individual with tetraplegia caused by C4 level spinal cord injury. ECoG signals were recorded with a high-density 32-electrode grid over the hand and arm area of the left sensorimotor cortex. The participant was able to voluntarily activate his sensorimotor cortex using attempted movements, with distinct cortical activity patterns for different segments of the upper limb. Using only brain activity, the participant achieved robust control of 3D cursor movement. The ECoG grid was explanted 28 days post-implantation with no adverse effect. This study demonstrates that ECoG signals recorded from the sensorimotor cortex can be used for real-time device control in paralyzed individuals

    Motor-related brain activity during action observation: A neural substrate for electrocorticographic brain-computer interfaces after spinal cord injury

    Get PDF
    After spinal cord injury (SCI), motor commands from the brain are unable to reach peripheral nerves and muscles below the level of the lesion. Action observation (AO), in which a person observes someone else performing an action, has been used to augment traditional rehabilitation paradigms. Similarly, AO can be used to derive the relationship between brain activity and movement kinematics for a motor-based brain-computer interface (BCI) even when the user cannot generate overt movements. BCIs use brain signals to control external devices to replace functions that have been lost due to SCI or other motor impairment. Previous studies have reported congruent motor cortical activity during observed and overt movements using magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). Recent single-unit studies using intracortical microelectrodes also demonstrated that a large number of motor cortical neurons had similar firing rate patterns between overt and observed movements. Given the increasing interest in electrocorticography (ECoG)-based BCIs, our goal was to identify whether action observation-related cortical activity could be recorded using ECoG during grasping tasks. Specifically, we aimed to identify congruent neural activity during observed and executed movements in both the sensorimotor rhythm (10-40 Hz) and the high-gamma band (65-115 Hz) which contains significant movement-related information. We observed significant motor-related high-gamma band activity during AO in both able-bodied individuals and one participant with a complete C4 SCI. Furthermore, in able-bodied participants, both the low and high frequency bands demonstrated congruent activity between action execution and observation. Our results suggest that AO could be an effective and critical procedure for deriving the mapping from ECoG signals to intended movement for an ECoG-based BCI system for individuals with paralysis. © 2014 Collinger, Vinjamuri, Degenhart, Weber, Sudre, Boninger, Tyler-Kabara and Wang

    Differential electrographic signatures generated by mechanistically-diverse seizurogenic compounds in the larval zebrafish brain.

    Get PDF
    This is the final version. Available from the Society for Neuroscience via the DOI in this record. We assessed similarities and differences in the electrographic signatures of local field potentials (LFPs) evoked by different pharmacological agents in zebrafish larvae. We then compared and contrasted these characteristics with what is known from electrophysiological studies of seizures and epilepsy in mammals, including humans. Ultimately, our aim was to phenotype neurophysiological features of drug-induced seizures in larval zebrafish for expanding knowledge on the translational potential of this valuable alternative to mammalian models. LFPs were recorded from the midbrain of 4-d-old zebrafish larvae exposed to a pharmacologically diverse panel of seizurogenic compounds, and the outputs of these recordings were assessed using frequency domain analysis. This included analysis of changes occurring within various spectral frequency bands of relevance to mammalian CNS circuit pathophysiology. From these analyses, there were clear differences in the frequency spectra of drug-exposed LFPs, relative to controls, many of which shared notable similarities with the signatures exhibited by mammalian CNS circuits. These similarities included the presence of specific frequency components comparable to those observed in mammalian studies of seizures and epilepsy. Collectively, the data presented provide important information to support the value of larval zebrafish as an alternative model for the study of seizures and epilepsy. These data also provide further insight into the electrophysiological characteristics of seizures generated in nonmammalian species by the action of neuroactive drugs.National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs

    4-dimensional functional profiling in the convulsant-treated larval zebrafish brain

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.Functional neuroimaging, using genetically-encoded Ca(2+) sensors in larval zebrafish, offers a powerful combination of high spatiotemporal resolution and higher vertebrate relevance for quantitative neuropharmacological profiling. Here we use zebrafish larvae with pan-neuronal expression of GCaMP6s, combined with light sheet microscopy and a novel image processing pipeline, for the 4D profiling of chemoconvulsant action in multiple brain regions. In untreated larvae, regions associated with autonomic functionality, sensory processing and stress-responsiveness, consistently exhibited elevated spontaneous activity. The application of drugs targeting different convulsant mechanisms (4-Aminopyridine, Pentylenetetrazole, Pilocarpine and Strychnine) resulted in distinct spatiotemporal patterns of activity. These activity patterns showed some interesting parallels with what is known of the distribution of their respective molecular targets, but crucially also revealed system-wide neural circuit responses to stimulation or suppression. Drug concentration-response curves of neural activity were identified in a number of anatomically-defined zebrafish brain regions, and in vivo larval electrophysiology, also conducted in 4dpf larvae, provided additional measures of neural activity. Our quantification of network-wide chemoconvulsant drug activity in the whole zebrafish brain illustrates the power of this approach for neuropharmacological profiling in applications ranging from accelerating studies of drug safety and efficacy, to identifying pharmacologically-altered networks in zebrafish models of human neurological disorders.This work was funded by the Biological and Biotechnology Research Council (CASE studentship BB/L502510/1, with AstraZeneca Safety Health and Environment), and by the University of Exeter and AstraZeneca

    Acidic environments trigger intracellular H+-sensing FAK proteins to re-balance sarcolemmal acid-base transporters and auto-regulate cardiomyocyte pH

    Get PDF
    AIMS: In cardiomyocytes, acute disturbances to intracellular pH (pHi) are promptly corrected by a system of finely-balanced sarcolemmal acid-base transporters. However, these fluxes become thermodynamically re-balanced in acidic environments, which inadvertently causes their set-point pHi to fall outside the physiological range. It is unclear whether an adaptive mechanism exists to correct this thermodynamic challenge and return pHi to normal. METHODS AND RESULTS: Following left-ventricle cryo-damage, a diffuse pattern of low extracellular pH (pHe) was detected by acid-sensing pHLIP. Despite this, pHi measured in the beating heart (13C NMR) was normal. Myocytes had adapted to their acidic environment by reducing Cl–/HCO3- exchange (CBE)-dependent acid-loading and increasing Na+/H+ exchange (NHE1)-dependent acid-extrusion, as measured by fluorescence (cSNARF1). The outcome of this adaptation on pHi is revealed as a cytoplasmic alkalinisation when cells are superfused at physiological pHe. Conversely, mice given oral bicarbonate to improve systemic buffering had reduced myocardial NHE1 expression, consistent with a needs-dependent expression of pHi-regulatory transporters. The response to sustained acidity could be replicated in vitro using neonatal ventricular myocytes (NRVMs) incubated at low pHe for 48 h. The adaptive increase in NHE1 and decrease in CBE activities was linked to Slc9a1 (NHE1) upregulation and Slc4a2 (AE2) downregulation. This response was triggered by intracellular H+ ions because it persisted in the absence of CO2/HCO3- and became ablated when acidic incubation media had low chloride concentration, a manoeuvre that reduces the extent of pHi decrease. Pharmacological inhibition of FAK-family non-receptor kinases, previously characterised as pH-sensors, ablated pHi autoregulation. In support of a pHi-sensing role, FAK protein Pyk2 (auto)phosphorylation was reduced within minutes of exposure to acidity, ahead of adaptive changes to pHi control. CONCLUSIONS: Cardiomyocytes fine-tune the expression of pHi-regulators so that pHi is at least 7.0. This autoregulatory feedback mechanism defines physiological pHi and protects it during pHe vulnerabilities. TRANSLATIONAL PERSPECTIVE: As a consequence of the inherent thermodynamic coupling between intra- and extracellular pH (pHi/pHe), sustained changes to perfusion, such as those in coronary disease or development, would have deleterious effects on the internal acid-base milieu of myocytes and hence cardiac function, unless offset by a corrective process. Using in-vivo and in-vitro models of acidification, we characterise this adaptive process functionally, and describe how it is engaged to auto-regulate pHi. This additional layer of homeostatic oversight enables the myocardium to operate within its optimal pHi-range, even at times when vascular perfusion is failing to maintain chemical constancy of the interstitial fluid

    Infections with Avian Pathogenic and Fecal Escherichia coli Strains Display Similar Lung Histopathology and Macrophage Apoptosis

    Get PDF
    The purpose of this study was to compare histopathological changes in the lungs of chickens infected with avian pathogenic (APEC) and avian fecal (Afecal) Escherichia coli strains, and to analyze how the interaction of the bacteria with avian macrophages relates to the outcome of the infection. Chickens were infected intratracheally with three APEC strains, MT78, IMT5155, and UEL17, and one non-pathogenic Afecal strain, IMT5104. The pathogenicity of the strains was assessed by isolating bacteria from lungs, kidneys, and spleens at 24 h post-infection (p.i.). Lungs were examined for histopathological changes at 12, 18, and 24 h p.i. Serial lung sections were stained with hematoxylin and eosin (HE), terminal deoxynucleotidyl dUTP nick end labeling (TUNEL) for detection of apoptotic cells, and an anti-O2 antibody for detection of MT78 and IMT5155. UEL17 and IMT5104 did not cause systemic infections and the extents of lung colonization were two orders of magnitude lower than for the septicemic strains MT78 and IMT5155, yet all four strains caused the same extent of inflammation in the lungs. The inflammation was localized; there were some congested areas next to unaffected areas. Only the inflamed regions became labeled with anti-O2 antibody. TUNEL labeling revealed the presence of apoptotic cells at 12 h p.i in the inflamed regions only, and before any necrotic foci could be seen. The TUNEL-positive cells were very likely dying heterophils, as evidenced by the purulent inflammation. Some of the dying cells observed in avian lungs in situ may also be macrophages, since all four avian E. coli induced caspase 3/7 activation in monolayers of HD11 avian macrophages. In summary, both pathogenic and non-pathogenic fecal strains of avian E. coli produce focal infections in the avian lung, and these are accompanied by inflammation and cell death in the infected areas

    Maturation of the Language Network: From Inter- to Intrahemispheric Connectivities

    Get PDF
    Language development must go hand-in-hand with brain maturation. Little is known about how the brain develops to serve language processing, in particular, the processing of complex syntax, a capacity unique to humans. Behavioral reports indicate that the ability to process complex syntax is not yet adult-like by the age of seven years. Here, we apply a novel method to demonstrate that the basic neural basis of language, as revealed by low frequency fluctuation stemming from functional MRI data, differs between six-year-old children and adults in crucial aspects. Although the classical language regions are actively in place by the age of six, the functional connectivity between these regions clearly is not. In contrast to adults who show strong connectivities between frontal and temporal language regions within the left hemisphere, children's default language network is characterized by a strong functional interhemispheric connectivity, mainly between the superior temporal regions. These data indicate a functional reorganization of the neural network underlying language development towards a system that allows a close interplay between frontal and temporal regions within the left hemisphere

    Evidence for Shared Cognitive Processing of Pitch in Music and Language

    Get PDF
    Language and music epitomize the complex representational and computational capacities of the human mind. Strikingly similar in their structural and expressive features, a longstanding question is whether the perceptual and cognitive mechanisms underlying these abilities are shared or distinct – either from each other or from other mental processes. One prominent feature shared between language and music is signal encoding using pitch, conveying pragmatics and semantics in language and melody in music. We investigated how pitch processing is shared between language and music by measuring consistency in individual differences in pitch perception across language, music, and three control conditions intended to assess basic sensory and domain-general cognitive processes. Individuals’ pitch perception abilities in language and music were most strongly related, even after accounting for performance in all control conditions. These results provide behavioral evidence, based on patterns of individual differences, that is consistent with the hypothesis that cognitive mechanisms for pitch processing may be shared between language and music.National Science Foundation (U.S.). Graduate Research Fellowship ProgramEunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (Grant 5K99HD057522
    corecore