2,621 research outputs found

    Lack of RNA-DNA oligonucleotide (chimeraplast) mutagenic activity in mouse embryos

    Get PDF
    There are numerous reports of the use of RNA-DNA oligonucleoticles (chimeraplasts) to correct point mutations in vitro and in vivo, including the human apolipoprotein E gene (ApoE). Despite the absence of selection for targeting, high efficiency conversion has been reported. Although mainly used to revert deleterious mutations for gene therapy applications, successful use of this approach would have the potential to greatly facilitate the production of defined mutations in mice and other species. We have attempted to create a point mutation in the mouse ApoE gene by microinjection of chimeraplast into the pronuclei of 1-cell mouse eggs. Following transfer of microinjected eggs we analysed 139 E12.5 embryos, but obtained no evidence for successful conversion. (c) 2005 Wiley-Liss, Inc

    Correction of the neuropathogenic human apolipoprotein E4 (APOE4) gene to APOE3 in vitro using synthetic RNA/DNA oligonucleotides (chimeraplasts)

    Get PDF
    Apolipoprotein E (apoE) is a multifunctional circulating 34-kDa protein, whose gene encodes single-nucleotide polymorphisms linked to several neurodegenerative diseases. Here, we evaluate whether synthetic RNA/DNA oligonucleoticles (chimeraplasts) can convert a dysfunctional gene, APOE4 (C -> T, Cys112Arg), a risk factor for Alzheimer's disease and other neurological disorders, into wild-type APOE3. In preliminary experiments, we treated recombinant Chinese hamster ovary (CHO) cells stably secreting apoE4 and lymphocytes from a patient homozygous for the epsilon 4 allele with a 68-mer apoE4-to-apoE3 chimeraplast, complexed to the cationic delivery reagent, polyethyleneimine. Genotypes were analyzed after 48 h by routine polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and by genomic sequencing. Clear conversions of APOE4 to APOE3 were detected using either technique, although high concentrations of chimeraplast were needed (>= 800 nM). Spiking experiments of PCR reactions or CHO-K1 cells with the chimeraplast confirmed that the repair was not artifactual. However, when treated recombinant CHO cells were passaged for 10 d and then subcloned, no conversion could be detected when > 90 clones were analyzed by locus-specific PCR-RFLP. We conclude that the apparent efficient repair of the APOE4 gene in CHO cells or lymphocytes 48 h post-treatment is unstable, possibly because the high levels of chimeraplast and polyethyleneimine that were needed to induce nucleotide substitution are cytotoxic

    Cluster PEACE observations of electron pressure tensor divergence in the magnetotail

    Get PDF
    Cluster crossed the magnetotail neutral sheet on four occasions between 16: 38 and 16: 43 UT on 08/17/2003. The four-spacecraft capabilities of Cluster are used to determine spatial gradients from the magnetic field vectors and, for the first time, full electron pressure tensors. We find that the contribution to the electric field from the Hall term (max of similar to 6 mV/m) pointed towards the neutral sheet, whereas that from the electron pressure divergence ( max of similar to 1 mV/m) pointed away from the neutral sheet. The electric field contributions in this direction were closely anti-correlated. During this period Clusters 1 and 4 were sometimes above and below the neutral sheet respectively. This allowed the simultaneous observation of magnetic fields that are interpreted as two quadrants of the Hall magnetic field system. An associated field-aligned current system was detected using the curlometer and moments of the particle distributions

    Apolipoprotein E delivery by peritoneal implantation of encapsulated recombinant cells improves the hyperlipidaemic profile in apoE-deficient mice

    Get PDF
    Plasma apolipoprotein E (apoE) is a 34-kDa polymorphic protein which has atheroprotective actions by clearing remnant lipoproteins and sequestering excess cellular cholesterol. Low or dysfunctional apoE is a risk factor for hyperlipidaemia and atherosclerosis, and for restenosis after angioplasty. Here, in short-term studies designed to establish proof-of-principle, we investigate whether encapsulated recombinant Chinese hamster ovary (CHO) cells can secrete wild-type apoE3 protein in vitro and then determine whether peritoneal implantation of the microcapsules into apoE-deficient (apoE(-/-)) mice reduces their hypercholesterolaemia.Recombinant CHO-E3 cells were encapsulated into either alginate poly-L-lysine or alginate polyethyleneimine/polybrene microspheres. After verifying stability and apoE3 secretion, the beads were then implanted into the peritoneal cavity of apoE(-/-) mice; levels of plasma apoE3, cholesterol and lipoproteins were monitored for up to 14 days post-implantation.Encapsulated CHO-E3 cells continued to secrete apoE3 protein throughout a 60-day study period in vitro, though levels declined after 14 days. This cell-derived apoE3 was biologically active. When conditioned medium from encapsulated CHO-E3 cells was incubated with cultured cells pre-labelled with [H-3]-cholesterol, efflux of cholesterol was two to four times greater than with normal medium (at 8 h, for example, 7.4+/-0.3% vs. 2.4+/-0.2% of cellular cholesterol; P<0.001). Moreover, when secreted apoE3 was injected intraperitoneally into apoE(-/-) mice, apoE3 was detected in plasma and the hyperlipidaemia improved. Similarly, when alginate polyethyleneimine/polybrene capsules were implanted into the peritoneum of apoE(-/-) mice, apoE3 was secreted into plasma and at 7 days total cholesterol was reduced, while atheroprotective high-density lipoprotein (HDL) increased. In a second study, apoE was detectable in plasma of five mice treated with alginate poly-L-lysine beads, 4 and 7 days post-implantation, though not at day 14. Furthermore, their hypercholesterolaemia was reduced, while HDL was clearly elevated in all mice at days 4 and 7 (from 18.4+/-6.2% of total lipoproteins to 31.1+/-6.8% at 7 days; P<0.001); however, these had rebounded by day 14, possibly due to the emergence of anti-apoE antibodies.We conclude that microencapsulated apoE-secreting cells have the potential to ameliorate the hyperlipidaemia of apoE deficiency, but that the technology must be improved to become a feasible therapeutic to treat atherosclerosis. (C) 2004 Elsevier B.V. All rights reserved

    Pauci Immune crescentic glomerulonephritis in a patient with T-cell lymphoma and argyria

    Get PDF
    Background Silver is a transition metal, toxic when ingested in significant amounts, causing argyria (skin deposition) and argyrosis (eye deposition). It is excreted mainly via the gastrointestinal tract with only small amounts eliminated by the kidneys, and rarely have cases of nephrotoxicity due to silver been reported. Here we present the case of a woman who used colloidal silver as an alternative remedy for a T cell lymphoma, who subsequently developed argyria and a pauci-immune crescentic glomerulonephritis with evidence of extensive glomerular basement membrane silver deposition. Case Presentation A 47 year old woman of Indo-Asian descent with a T-cell lymphoma who refused conventional chemotherapy for 18 months but self-medicated with a remedy containing colloidal silver, was admitted with acute dialysis-dependent kidney injury. A kidney biopsy demonstrated a pauci-immune crescentic glomerulonephritis with deposition of silver particles in the mesangium and along the glomerular basement membranes. The patient was treated with intravenous methylprednisolone and intravenous cyclophosphamide and recovered independent renal function. Conclusion Chronological evolution of the the pauci-immune glomerulonephritis suggests that a cellular immune-mediated process was induced, potentially mediated by lymphomatous T cells directed at the glomerular basement membrane, following silver deposition. Immunosuppressive therapy improved the situation and allowed cessation of haemodialysis, supporting the hypothesis of an immune-mediated process

    4-dimensional functional profiling in the convulsant-treated larval zebrafish brain

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.Functional neuroimaging, using genetically-encoded Ca(2+) sensors in larval zebrafish, offers a powerful combination of high spatiotemporal resolution and higher vertebrate relevance for quantitative neuropharmacological profiling. Here we use zebrafish larvae with pan-neuronal expression of GCaMP6s, combined with light sheet microscopy and a novel image processing pipeline, for the 4D profiling of chemoconvulsant action in multiple brain regions. In untreated larvae, regions associated with autonomic functionality, sensory processing and stress-responsiveness, consistently exhibited elevated spontaneous activity. The application of drugs targeting different convulsant mechanisms (4-Aminopyridine, Pentylenetetrazole, Pilocarpine and Strychnine) resulted in distinct spatiotemporal patterns of activity. These activity patterns showed some interesting parallels with what is known of the distribution of their respective molecular targets, but crucially also revealed system-wide neural circuit responses to stimulation or suppression. Drug concentration-response curves of neural activity were identified in a number of anatomically-defined zebrafish brain regions, and in vivo larval electrophysiology, also conducted in 4dpf larvae, provided additional measures of neural activity. Our quantification of network-wide chemoconvulsant drug activity in the whole zebrafish brain illustrates the power of this approach for neuropharmacological profiling in applications ranging from accelerating studies of drug safety and efficacy, to identifying pharmacologically-altered networks in zebrafish models of human neurological disorders.This work was funded by the Biological and Biotechnology Research Council (CASE studentship BB/L502510/1, with AstraZeneca Safety Health and Environment), and by the University of Exeter and AstraZeneca

    Hot new directions for quasi-Monte Carlo research in step with applications

    Full text link
    This article provides an overview of some interfaces between the theory of quasi-Monte Carlo (QMC) methods and applications. We summarize three QMC theoretical settings: first order QMC methods in the unit cube [0,1]s[0,1]^s and in Rs\mathbb{R}^s, and higher order QMC methods in the unit cube. One important feature is that their error bounds can be independent of the dimension ss under appropriate conditions on the function spaces. Another important feature is that good parameters for these QMC methods can be obtained by fast efficient algorithms even when ss is large. We outline three different applications and explain how they can tap into the different QMC theory. We also discuss three cost saving strategies that can be combined with QMC in these applications. Many of these recent QMC theory and methods are developed not in isolation, but in close connection with applications

    Redefining risk research priorities for nanomaterials

    Get PDF
    Chemical-based risk assessment underpins the current approach to responsible development of nanomaterials (NM). It is now recognised, however, that this process may take decades, leaving decision makers with little support in the near term. Despite this, current and near future research efforts are largely directed at establishing (eco)toxicological and exposure data for NM, and comparatively little research has been undertaken on tools or approaches that may facilitate near-term decisions, some of which we briefly outline in this analysis. We propose a reprioritisation of NM risk research efforts to redress this imbalance, including the development of more adaptive risk governance frameworks, alternative/complementary tools to risk assessment, and health and environment surveillance

    Escherichia coli induces apoptosis and proliferation of mammary cells

    Get PDF
    Mammary cell apoptosis and proliferation were assessed after injection of Escherichia coli into the left mammary quarters of six cows. Bacteriological analysis of foremilk samples revealed coliform infection in the injected quarters of four cows. Milk somatic cell counts increased in these quarters and peaked at 24 h after bacterial injection. Body temperature also increased, peaking at 12 h postinjection, The number of apoptotic cells was significantly higher in the mastitic tissue than in the uninfected control. Expression of Bax and interleukin-1 beta converting enzyme increased in the mastitic tissue at 24 h and 72 h postinfection, whereas Bcl-2 expression decreased at 24 h but did not differ significantly from the control at 72 h postinfection, Induction of matrix metalloproteinase-g, stromelysin-1 and urokinase-type plasminogen activator was also observed in the mastitic tissue. Moreover, cell proliferation increased in the infected tissue, These results demonstrate that Escherichia coli-induced mastitis promotes apoptosis and cell proliferation
    • ā€¦
    corecore