71 research outputs found

    The Latent Structure of Autistic Traits:A Taxometric, Latent Class and Latent Profile Analysis of the Adult Autism Spectrum Quotient

    Get PDF
    Autistic traits are widely thought to operate along a continuum. A taxometric analysis of Adult Autism Spectrum Quotient data was conducted to test this assumption, finding little support but identifying a high severity taxon. To understand this further, latent class and latent profile models were estimated that indicated the presence of six distinct subtypes: one with little probability of endorsing any autistic traits, one engaging in ‘systemising’ behaviours, three groups endorsing multiple components of Wing and Gould’s autistic triad, and a group similar in size and profile to the taxon previously identified. These analyses suggest the AQ (and potentially by extension autistic traits) have a categorical structure. These findings have important implications for the analysis and interpretation of AQ data

    Critical current density: Measurements vs. reality

    Get PDF
    Different experimental techniques are employed to evaluate the critical current density (Jc), namely transport current measurements and two different magnetisation measurements forming quasi-equilibrium and dynamic critical states. Our technique-dependent results for superconducting YBa 2Cu3O7 (YBCO) film and MgB2 bulk samples show an extremely high sensitivity of Jc and associated interpretations, such as irreversibility fields and Kramer plots, which lose meaning without a universal approach. We propose such approach for YBCO films based on their unique pinning features. This approach allows us to accurately recalculate the magnetic-field-dependent Jc obtained by any technique into the Jc behaviour, which would have been measured by any other method without performing the corresponding experiments. We also discovered low-frequency-dependent phenomena, governing flux dynamics, but contradicting the considered ones in the literature. The understanding of these phenomena, relevant to applications with moving superconductors, can clarify their dramatic impact on the electric-field criterion through flux diffusivity and corresponding measurements. © Copyright EPLA, 2013

    Dlgap1 knockout mice exhibit alterations of the postsynaptic density and selective reductions in sociability

    Get PDF
    Abstract The scaffold protein DLGAP1 is localized at the post-synaptic density (PSD) of glutamatergic neurons and is a component of supramolecular protein complexes organized by PSD95. Gain-of-function variants of DLGAP1 have been associated with obsessive-compulsive disorder (OCD), while haploinsufficient variants have been linked to autism spectrum disorder (ASD) and schizophrenia in human genetic studies. We tested male and female Dlgap1 wild type (WT), heterozygous (HT), and knockout (KO) mice in a battery of behavioral tests: open field, dig, splash, prepulse inhibition, forced swim, nest building, social approach, and sucrose preference. We also used biochemical approaches to examine the role of DLGAP1 in the organization of PSD protein complexes. Dlgap1 KO mice were most notable for disruption of protein interactions in the PSD, and deficits in sociability. Other behavioral measures were largely unaffected. Our data suggest that Dlgap1 knockout leads to PSD disruption and reduced sociability, consistent with reports of DLGAP1 haploinsufficient variants in schizophrenia and ASD

    Mechanisms of Risk and Resilience in Military Families: Theoretical and Empirical Basis of a Family-Focused Resilience Enhancement Program

    Get PDF
    Recent studies have confirmed that repeated wartime deployment of a parent exacts a toll on military children and families and that the quality and functionality of familial relations is linked to force preservation and readiness. As a result, family-centered care has increasingly become a priority across the military health system. FOCUS (Families OverComing Under Stress), a family-centered, resilience-enhancing program developed by a team at UCLA and Harvard Schools of Medicine, is a primary initiative in this movement. In a large-scale implementation project initiated by the Bureau of Navy Medicine, FOCUS has been delivered to thousands of Navy, Marine, Navy Special Warfare, Army, and Air Force families since 2008. This article describes the theoretical and empirical foundation and rationale for FOCUS, which is rooted in a broad conception of family resilience. We review the literature on family resilience, noting that an important next step in building a clinically useful theory of family resilience is to move beyond developing broad “shopping lists” of risk indicators by proposing specific mechanisms of risk and resilience. Based on the literature, we propose five primary risk mechanisms for military families and common negative “chain reaction” pathways through which they undermine the resilience of families contending with wartime deployments and parental injury. In addition, we propose specific mechanisms that mobilize and enhance resilience in military families and that comprise central features of the FOCUS Program. We describe these resilience-enhancing mechanisms in detail, followed by a discussion of the ways in which evaluation data from the program’s first 2 years of operation supports the proposed model and the specified mechanisms of action

    Neural Circuits Underlying Rodent Sociality: A Comparative Approach

    Get PDF
    All mammals begin life in social groups, but for some species, social relationships persist and develop throughout the course of an individual’s life. Research in multiple rodent species provides evidence of relatively conserved circuitry underlying social behaviors and processes such as social recognition and memory, social reward, and social approach/avoidance. Species exhibiting different complex social behaviors and social systems (such as social monogamy or familiarity preferences) can be characterized in part by when and how they display specific social behaviors. Prairie and meadow voles are closely related species that exhibit similarly selective peer preferences but different mating systems, aiding direct comparison of the mechanisms underlying affiliative behavior. This chapter draws on research in voles as well as other rodents to explore the mechanisms involved in individual social behavior processes, as well as specific complex social patterns. Contrasts between vole species exemplify how the laboratory study of diverse species improves our understanding of the mechanisms underlying social behavior. We identify several additional rodent species whose interesting social structures and available ecological and behavioral field data make them good candidates for study. New techniques and integration across laboratory and field settings will provide exciting opportunities for future mechanistic work in non-model species

    Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression

    Get PDF
    Over the past decade, it has become clear that mammalian genomes encode thousands of long non-coding RNAs (lncRNAs), many of which are now implicated in diverse biological processes. Recent work studying the molecular mechanisms of several key examples — including Xist, which orchestrates X chromosome inactivation — has provided new insights into how lncRNAs can control cellular functions by acting in the nucleus. Here we discuss emerging mechanistic insights into how lncRNAs can regulate gene expression by coordinating regulatory proteins, localizing to target loci and shaping three-dimensional (3D) nuclear organization. We explore these principles to highlight biological challenges in gene regulation, in which lncRNAs are well-suited to perform roles that cannot be carried out by DNA elements or protein regulators alone, such as acting as spatial amplifiers of regulatory signals in the nucleus

    A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe

    Get PDF
    Anaplasma phagocytophilum is the agent of tick-borne fever, equine, canine and human granulocytic anaplasmosis. The common route of A. phagocytophilum transmission is through a tick bite, the main vector in Europe being Ixodes ricinus. Despite the apparently ubiquitous presence of the pathogen A. phagocytophilum in ticks and various wild and domestic animals from Europe, up to date published clinical cases of human granulocytic anaplasmosis (HGA) remain rare compared to the worldwide status. It is unclear if this reflects the epidemiological dynamics of the human infection in Europe or if the disease is underdiagnosed or underreported. Epidemiologic studies in Europe have suggested an increased occupational risk of infection for forestry workers, hunters, veterinarians, and farmers with a tick-bite history and living in endemic areas. Although the overall genetic diversity of A. phagocytophilum in Europe is higher than in the USA, the strains responsible for the human infections are related on both continents. However, the study of the genetic variability and assessment of the difference of pathogenicity and infectivity between strains to various hosts has been insufficiently explored to date. Most of the European HGA cases presented as a mild infection, common clinical signs being pyrexia, headache, myalgia and arthralgia. The diagnosis of HGA in the USA was recommended to be based on clinical signs and the patient’s history and later confirmed using specialized laboratory tests. However, in Europe since the majority of cases are presenting as mild infection, laboratory tests may be performed before the treatment in order to avoid antibiotic overuse. The drug of choice for HGA is doxycycline and because of potential for serious complication the treatment should be instituted on clinical suspicion alone

    Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression

    Full text link
    corecore