6,524 research outputs found

    Multi-tissue transcriptomic-informed in silico investigation of drugs for the treatment of dengue fever disease

    Get PDF
    Transcriptomics, proteomics and pathogen-host interactomics data are being explored for the in silico–informed selection of drugs, prior to their functional evaluation. The effectiveness of this kind of strategy has been put to the test in the current COVID-19 pandemic, and it has been paying off, leading to a few drugs being rapidly repurposed as treatment against SARS-CoV-2 infection. Several neglected tropical diseases, for which treatment remains unavailable, would benefit from informed in silico investigations of drugs, as performed in this work for Dengue fever disease. We analyzed transcriptomic data in the key tissues of liver, spleen and blood profiles and verified that despite transcriptomic differences due to tissue specialization, the common mechanisms of action, “Adrenergic receptor antagonist”, “ATPase inhibitor”, “NF-kB pathway inhibitor” and “Serotonin receptor antagonist”, were identified as druggable (e.g., oxprenolol, digoxin, auranofin and palonosetron, respectively) to oppose the effects of severe Dengue infection in these tissues. These are good candidates for future functional evaluation and clinical trials.Funding was provided by FEDER, Fundo Europeu de Desenvolvimento Regional funds, through the COMPETE 2020, Competitiveness and Internationalization Operational Programme (POCI), Portugal 2020, and by Portuguese funds through FCT/MinistĂ©rio da CiĂȘncia, Tecnologia e Inovação, in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274)

    Immunophenotypic studies of monoclonal gammopathy of undetermined significance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monoclonal gammopathy of undetermined significance (MGUS) is a common plasma cell dyscrasia, comprising the most indolent form of monoclonal gammopathy. However, approximately 25% of MGUS cases ultimately progress to plasma cell myeloma (PCM) or related diseases. It is difficult to predict which subset of patients will transform. In this study, we examined the immunophenotypic differences of plasma cells in MGUS and PCM.</p> <p>Methods</p> <p>Bone marrow specimens from 32 MGUS patients and 32 PCM patients were analyzed by 4-color flow cytometry, using cluster analysis of ungated data, for the expression of several markers, including CD10, CD19, CD20, CD38, CD45, CD56 and surface and intracellular immunoglobulin light chains.</p> <p>Results</p> <p>All MGUS patients had two subpopulations of plasma cells, one with a "normal" phenotype [CD19(+), CD56(-), CD38(bright +)] and one with an aberrant phenotype [either CD19(-)/CD56(+) or CD19(-)/CD56(-)]. The normal subpopulation ranged from 4.4 to 86% (mean 27%) of total plasma cells. Only 20 of 32 PCM cases showed an identifiable normal subpopulation at significantly lower frequency [range 0–32%, mean 3.3%, p << 0.001]. The plasma cells in PCM were significantly less likely to express CD19 [1/32 (3.1%) vs. 13/29 (45%), p << 0.001] and more likely to express surface immunoglobulin [21/32 (66%) vs. 3/28 (11%), p << 0.001], compared to MGUS. Those expressing CD19 did so at a significantly lower level than in MGUS, with no overlap in mean fluorescence intensities [174 ± 25 vs. 430 ± 34, p << 0.001]. There were no significant differences in CD56 expression [23/32 (72%) vs. 18/29 (62%), p = 0.29], CD45 expression [15/32 (47%) vs. 20/30 (67%), p = 0.10] or CD38 mean fluorescence intensities [6552 ± 451 vs. 6365 ± 420, p = 0.38]. Two of the six MGUS cases (33%) with >90% CD19(-) plasma cells showed progression of disease, whereas none of the cases with >10% CD19(+) plasma cells evolved to PCM.</p> <p>Conclusion</p> <p>MGUS cases with potential for disease progression appeared to lack CD19 expression on >90% of their plasma cells, displaying an immunophenotypic profile similar to PCM plasma cells. A higher relative proportion of CD19(+) plasma cells in MGUS may be associated with a lower potential for disease progression.</p

    SCN1A variants from bench to bedside-improved clinical prediction from functional characterization

    Get PDF
    Variants in the SCN1A gene are associated with a wide range of disorders including genetic epilepsy with febrile seizures plus (GEFS+), familial hemiplegic migraine (FHM), and the severe childhood epilepsy Dravet syndrome (DS). Predicting disease outcomes based on variant type remains challenging. Despite thousands of SCN1A variants being reported, only a minority has been functionally assessed. We review the functional SCN1A work performed to date, critically appraise electrophysiological measurements, compare this to in silico predictions, and relate our findings to the clinical phenotype. Our results show, regardless of the underlying phenotype, that conventional in silico software correctly predicted benign from pathogenic variants in nearly 90%, however was unable to differentiate within the disease spectrum (DS vs. GEFS+ vs. FHM). In contrast, patch‐clamp data from mammalian expression systems revealed functional differences among missense variants allowing discrimination between disease severities. Those presenting with milder phenotypes retained a degree of channel function measured as residual whole‐cell current, whereas those without any whole‐cell current were often associated with DS (p = .024). These findings demonstrate that electrophysiological data from mammalian expression systems can serve as useful disease biomarker when evaluating SCN1A variants, particularly in view of new and emerging treatment options in DS

    A novel PKC activating molecule promotes neuroblast differentiation and delivery of newborn neurons in brain injuries

    Get PDF
    Neural stem cells are activated within neurogenic niches in response to brain injuries. This results in the production of neuroblasts, which unsuccessfully attempt to migrate toward the damaged tissue. Injuries constitute a gliogenic/non-neurogenic niche generated by the presence of anti-neurogenic signals, which impair neuronal differentiation and migration. Kinases of the protein kinase C (PKC) family mediate the release of growth factors that participate in different steps of the neurogenic process, particularly, novel PKC isozymes facilitate the release of the neurogenic growth factor neuregulin. We have demonstrated herein that a plant derived diterpene, (EOF2; CAS number 2230806-06-9), with the capacity to activate PKC facilitates the release of neuregulin 1, and promotes neuroblasts differentiation and survival in cultures of subventricular zone (SVZ) isolated cells in a novel PKC dependent manner. Local infusion of this compound in mechanical cortical injuries induces neuroblast enrichment within the perilesional area, and noninvasive intranasal administration of EOF2 promotes migration of neuroblasts from the SVZ towards the injury, allowing their survival and differentiation into mature neurons, being some of them cholinergic and GABAergic. Our results elucidate the mechanism of EOF2 promoting neurogenesis in injuries and highlight the role of novel PKC isozymes as targets in brain injury regeneration

    The metabolic interplay between dietary carbohydrate and exercise and its role in acute appetite-regulation in males: a randomised controlled study

    Get PDF
    Understanding the metabolic determinants of post-exercise appetite-regulation would facilitate the development of adjunctive-therapeutics to supress compensatory eating behaviours and improve the efficacy of exercise as a weight loss treatment. Metabolic responses to acute exercise are however dependent on pre-exercise nutritional practices, including carbohydrate intake. We therefore aimed to determine the interactive effects of dietary carbohydrate and exercise on plasma hormonal and metabolite responses and explore mediators of exercise-induced changes in appetite-regulation across nutritional states. In this randomised crossover study, participants completed four 120 min visits: (i) control (water) followed by rest; (ii) control followed by exercise (30 min at ∌75% V̇O2 max); (iii) carbohydrate (75 g maltodextrin) followed by rest; and (iv) carbohydrate followed by exercise. An ad libitum meal was provided at the end of each 120 min visit, with blood sample collection and appetite assessment performed at pre-defined intervals. We found that dietary carbohydrate and exercise exerted independent effects on the hormones GLP-1 (Carbohydrate: 16.8 pmol/L, Exercise: 7.4 pmol/L), ghrelin (Carbohydrate: -48.8 pmol/L, Exercise: -22.7 pmol/L) and glucagon (Carbohydrate: 9.8 ng/L, Exercise: 8.2 ng/L) that were linked to the generation of distinct plasma 1H-NMR metabolic phenotypes. These metabolic responses were associated with changes in appetite and energy intake, and plasma acetate and succinate were subsequently identified as potential novel mediators of exercise-induced appetite and energy intake responses. In summary, dietary carbohydrate and exercise independently influence gastrointestinal hormones associated with appetite regulation. Future work is warranted to probe the mechanistic importance of plasma acetate and succinate in post-exercise appetite-regulation

    What Are You Looking At? Team Fight Prediction Through Player Camera

    Get PDF
    Esport is a large and still growing industry with vast audiences. Multiplayer Online Battle Arenas (MOBAs), a sub-genre of esports, possess a very complex environment, which often leads to experts missing important coverage while broadcasting live competitions. One common game event that holds significant importance for broadcasting is referred to as a team fight engagement. Professional player's own knowledge and understanding of the game may provide a solution to this problem. This paper suggests a model that predicts and detects ongoing team fights in a live scenario. This approach outlines a novel technique of deriving representations of a complex game environment by relying on player knowledge. This is done by analysing the positions of the in-game characters and their associated cameras, utilising this data to train a neural network. The proposed model is able to both assist in the production of live esport coverage as well as provide a live, expert-derived, analysis of the game without the need of relying on outside sources

    Distribution of preoperative and postoperative astigmatism in a large population of patients undergoing cataract surgery in the UK

    Get PDF
    PURPOSE: To assess the prevalence and severity of preoperative and postoperative astigmatism in patients with cataract in the UK. SETTING: Data from 8 UK National Health Service ophthalmology clinics using MediSoft electronic medical records (EMRs). DESIGN: Retrospective cohort study. METHODS: Eyes from patients aged ≄65 years undergoing cataract surgery were analysed. For all eyes, preoperative (corneal) astigmatism was evaluated using the most recent keratometry measure within 2 years prior to surgery. For eyes receiving standard monofocal intraocular lens (IOLs), postoperative refractive astigmatism was evaluated using the most recent refraction measure within 2-12 months postsurgery. A power vector analysis compared changes in the astigmatic 2-dimensional vector (J0, J45) before and after surgery, for the subgroup of eyes with both preoperative and postoperative astigmatism measurements. Visual acuity was also assessed preoperatively and postoperatively. RESULTS: Eligible eyes included in the analysis were 110 468. Of these, 78% (n=85 650) had preoperative (corneal) astigmatism ≄0.5 dioptres (D), 42% (n=46 003) ≄1.0 D, 21% (n=22 899) ≄1.5 D and 11% (n=11 651) ≄2.0 D. After surgery, the refraction cylinder was available for 39 744 (36%) eyes receiving standard monofocal IOLs, of which 90% (n=35 907) had postoperative astigmatism ≄0.5 D and 58% (n=22 886) ≄1.0 D. Visual acuity tended to worsen postoperatively with increased astigmatism (ρ=-0.44, P<0.01). CONCLUSIONS: There is a significant burden of preoperative astigmatism in the UK cataract population. The available refraction data indicate that this burden is not reduced after surgery with implantation of standard monofocal IOLs. Measures should be taken to improve visual outcomes of patients with astigmatic cataract by simultaneously correcting astigmatism during cataract surgery

    Differences in the signaling pathways of α1A- and α1B-adrenoceptors are related to different endosomal targeting

    Get PDF
    Aims: To compare the constitutive and agonist-dependent endosomal trafficking of α1A- and α1B-adrenoceptors (ARs) and to establish if the internalization pattern determines the signaling pathways of each subtype. Methods: Using CypHer5 technology and VSV-G epitope tagged α1A- and α1B-ARs stably and transiently expressed in HEK 293 cells, we analyzed by confocal microscopy the constitutive and agonist-induced internalization of each subtype, and the temporal relationship between agonist induced internalization and the increase in intracellular calcium (determined by FLUO-3 flouorescence), or the phosphorylation of ERK1/2 and p38 MAP kinases (determined by Western blot). Results and Conclusions: Constitutive as well as agonist-induced trafficking of α1A and α1B ARs maintain two different endosomal pools of receptors: one located close to the plasma membrane and the other deeper into the cytosol. Each subtype exhibited specific characteristics of internalization and distribution between these pools that determines their signaling pathways: α1A-ARs, when located in the plasma membrane, signal through calcium and ERK1/2 pathways but, when translocated to deeper endosomes, through a mechanism sensitive to ÎČ-arrestin and concanavalin A, continue signaling through ERK1/2 and also activate the p38 pathway. α1B-ARs signal through calcium and ERK1/2 only when located in the membrane and the signals disappear after endocytosis and by disruption of the membrane lipid rafts by methyl-ÎČ-cyclodextrin
    • 

    corecore