220 research outputs found
Anticrossing of spin-split subbands in quasi-one-dimensional wires
In quantum Hall systems, both anticrossings and magnetic phase transitions can occur when opposite-spin Landau levels coincide. Our results indicate that both processes are also possible in quasi-1D quantum wires in an in-plane B field, B-parallel to. Crossings of opposite-spin 1D subbands resemble magnetic phase transitions at zero dc source-drain bias, but display anticrossings at high dc bias. Our data also imply that the well-known 0.7 structure may evolve into a spin-hybridized state in finite dc bias
Interaction effects at crossings of spin-polarized one-dimensional subbands
We report conductance measurements of ballistic one-dimensional (1D) wires defined in GaAs/AlGaAs heterostructures in an in-plane magnetic field, B. When the Zeeman energy is equal to the 1D subband energy spacing, the spin-split subband Nup arrow intersects (N+1)down arrow, where N is the index of the spin-degenerate 1D subband. At the crossing of N=1up arrow and N=2down arrow subbands, there is a spontaneous splitting giving rise to an additional conductance structure evolving from the 1.5(2e(2)/h) plateau. With further increase in B, the structure develops into a plateau and lowers to 2e(2)/h. With increasing temperature and magnetic field the structure shows characteristics of the 0.7 structure. Our results suggest that at low densities a spontaneous spin splitting occurs whenever two 1D subbands of opposite spins cross
Hierarchy Theory of Evolution and the Extended Evolutionary Synthesis: Some Epistemic Bridges, Some Conceptual Rifts
Contemporary evolutionary biology comprises a plural landscape of multiple co-existent conceptual frameworks and strenuous voices that disagree on the nature and scope of evolutionary theory. Since the mid-eighties, some of these conceptual frameworks have denounced the ontologies of the Modern Synthesis and of the updated Standard Theory of Evolution as unfinished or even flawed. In this paper, we analyze and compare two of those conceptual frameworks, namely Niles Eldredge’s Hierarchy Theory of Evolution (with its extended ontology of evolutionary entities) and the Extended Evolutionary Synthesis (with its proposal of an extended ontology of evolutionary processes), in an attempt to map some epistemic bridges (e.g. compatible views of causation; niche construction) and some conceptual rifts (e.g. extra-genetic inheritance; different perspectives on macroevolution; contrasting standpoints held in the “externalism–internalism” debate) that exist between them. This paper seeks to encourage theoretical, philosophical and historiographical discussions about pluralism or the possible unification of contemporary evolutionary biology
Mouse Aortic Ring Assay: A New Approach of the Molecular Genetics of Angiogenesis
Angiogenesis, a key step in many physiological and pathological processes, involves proteolysis of the extracellular matrix. To study the role of two enzymatic families, serine-proteases and matrix metalloproteases in angiogenesis, we have adapted to the mouse, the aortic ring assay initially developed in the rat. The use of deficient mice allowed us to demonstrate that PAI-1 is essential for angiogenesis while the absence of an MMP, MMP-11, did not affect vessel sprouting. We report here that this model is attractive to elucidate the cellular and molecular mechanisms of angiogenesis, to identify, characterise or screen "pro- or anti-angiogenic agents that could be used for the treatment of angiogenesis-dependent diseases. Approaches include using recombinant proteins, synthetic molecules and adenovirus-mediated gene transfer
Autoimmune and autoinflammatory mechanisms in uveitis
The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8(+) T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders
Electronic Cigarette Advertising Impacts Adversely on Smoking Behaviour Within a London Student Cohort: A Cross-Sectional Structured Survey.
INTRODUCTION: In contrast to tobacco smoking, electronic cigarette ("vaping") advertisement had been approved in the United Kingdom (UK) in January 2013. Currently, there are an estimated 3.2 million UK e-cigarette users. The impact of e-cigarette advertisement on tobacco use has not been studied in detail. We hypothesised that e-cigarette advertisement impacts on conventional smoking behaviour. METHODS: A cross-sectional structured survey assessed the impact of e-cigarette advertising on the perceived social acceptability of cigarette and e-cigarette smoking and on using either cigarettes or e-cigarettes (on a scale of 1 to 5/'not at all' to 'a lot'). The survey was administered between January to March 2015 to London university students, before and after viewing 5 UK adverts including a TV commercial. RESULTS: Data were collected from 106 participants (22 ± 2 years, 66% male), comprising cigarette smokers (32%), non-smokers (54%) and ex-smokers (14%). This included vapers (16%), non-vapers (77%) and ex-vapers (7%). After viewing the adverts, smokers (2.6 ± 1.0 vs. 3.8 ± 1.1, p = 0.001) and non-smokers (3.2 ± 0.7 vs. 3.7 ± 0.8, p = 0.007) felt smoking was more socially acceptable, compared to before viewing them. Participants were more likely to try both e-cigarettes (1.90 ± 1.03 to 3.09 ± 1.11, p < 0.001) and conventional cigarettes (1.73 ± 0.83 to 2.27 ± 1.13, p < 0.001) after viewing the adverts compared to before. Vapers were less likely to smoke both an e-cigarette, and a conventional cigarette after viewing the adverts. CONCLUSION: E-cigarette advertising encourages both e-cigarette and conventional cigarette use in young smokers and non-smokers. The adverts increase the social acceptability of smoking without regarding the importance of public health campaigns that champion smoking cessation
Plasmacytoid DC from Aged Mice Down-Regulate CD8 T Cell Responses by Inhibiting cDC Maturation after Encephalitozoon cuniculi Infection
Age associated impairment of immune function results in inefficient vaccination, tumor surveillance and increased severity of infections. Several alterations in adaptive immunity have been observed and recent studies report age related declines in innate immune responses to opportunistic pathogens including Encephalitozoon cuniculi. We previously demonstrated that conventional dendritic cells (cDC) from 9-month-old animals exhibit sub-optimal response to E. cuniculi infection, suggesting that age associated immune senescence begins earlier than expected. We focused this study on how age affects plasmacytoid DC (pDC) function. More specifically how aged pDC affect cDC function as we observed that the latter are the predominant activators of CD8 T cells during this infection. Our present study demonstrates that pDC from middle-aged mice (12 months) suppress young (8 week old) cDC driven CD8 T cell priming against E. cuniculi infection. The suppressive effect of pDC from older mice decreased maturation of young cDC via cell contact. Aged mouse pDC exhibited higher expression of PD-L1 and blockade of their interaction with cDC via this molecule restored cDC maturation and T cell priming. Furthermore, the PD-L1 dependent suppression of cDC T cell priming was restricted to effector function of antigen-specific CD8 T cells not their expansion. To the best of our knowledge, the data presented here is the first report highlighting a cell contact dependent, PD-L1 regulated, age associated defect in a DC subpopulation that results in a sub-optimal immune response against E. cuniculi infection. These results have broad implications for design of immunotherapeutic approaches to enhance immunity for aging populations
Thermal niche evolution and geographical range expansion in a species complex of western Mediterranean diving beetles
[Background] Species thermal requirements are one of the principal determinants of their ecology and biogeography, although our understanding of the interplay between these factors is limited by the paucity of integrative empirical studies. Here we use empirically collected thermal tolerance data in combination with molecular phylogenetics/phylogeography and ecological niche modelling to study the evolution of a clade of three western Mediterranean diving beetles, the Agabus brunneus complex.[Results] The preferred mitochondrial DNA topology recovered A. ramblae (North Africa, east Iberia and Balearic islands) as paraphyletic, with A. brunneus (widespread in the southwestern Mediterranean) and A. rufulus (Corsica and Sardinia) nested within it, with an estimated origin between 0.60-0.25 Ma. All three species were, however, recovered as monophyletic using nuclear DNA markers. A Bayesian skyline plot suggested demographic expansion in the clade at the onset of the last glacial cycle. The species thermal tolerances differ significantly, with A. brunneus able to tolerate lower temperatures than the other taxa. The climatic niche of the three species also differs, with A. ramblae occupying more arid and seasonal areas, with a higher minimum temperature in the coldest month. The estimated potential distribution for both A. brunneus and A. ramblae was most restricted in the last interglacial, becoming increasingly wider through the last glacial and the Holocene.[Conclusions] The A. brunneus complex diversified in the late Pleistocene, most likely in south Iberia after colonization from Morocco. Insular forms did not differentiate substantially in morphology or ecology, but A. brunneus evolved a wider tolerance to cold, which appeared to have facilitated its geographic expansion. Both A. brunneus and A. ramblae expanded their ranges during the last glacial, although they have not occupied areas beyond their LGM potential distribution except for isolated populations of A. brunneus in France and England. On the islands and possibly Tunisia secondary contact between A. brunneus and A. ramblae or A. rufulus has resulted in introgression. Our work highlights the complex dynamics of speciation and range expansions within southern areas during the last glacial cycle, and points to the often neglected role of North Africa as a source of European biodiversity.This work was supported by an FPI grant to AH-G and projects CGL2007-61665 and CGL2010-15755 from the Spanish government to IR. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).Peer reviewe
Coenzyme Q10 Reduces Ethanol-Induced Apoptosis in Corneal Fibroblasts
Dilute ethanol (EtOH) is a widely used agent to remove the corneal epithelium during the modern refractive surgery. The application of EtOH may cause the underlying corneal fibroblasts to undergo apoptosis. This study was designed to investigate the protective effect and potential mechanism of the respiratory chain coenzyme Q10 (CoQ10), an electron transporter of the mitochondrial respiratory chain and a ubiquitous free radical scavenger, against EtOH-induced apoptosis of corneal fibroblasts. Corneal fibroblasts were pretreated with CoQ10 (10 µM) for 2 h, followed by exposure to different concentrations of EtOH (0.4, 2, 4, and 20%) for 20 s. After indicated incubation period (2–12 h), MTT assay was used to examine cell viability. Treated cells were further assessed by flow cytometry to identify apoptosis. Reactive oxygen species (ROS) and the change in mitochondrial membrane potential were assessed using dichlorodihydrofluorescein diacetate/2′,7′-dichlorofluorescein (DCFH-DA/DCF) assays and flow-cytometric analysis of JC-1 staining, respectively. The activity and expression of caspases 2, 3, 8, and 9 were evaluated with a colorimetric assay and western blot analysis. We found that EtOH treatment significantly decreased the viability of corneal fibroblasts characterized by a higher percentage of apoptotic cells. CoQ10 could antagonize the apoptosis inducing effect of EtOH. The inhibition of cell apoptosis by CoQ10 was significant at 8 and 12 h after EtOH exposure. In EtOH-exposed corneal fibroblasts, CoQ10 pretreatment significantly reduced mitochondrial depolarization and ROS production at 30, 60, 90, and 120 min and inhibited the activation and expression of caspases 2 and 3 at 2 h after EtOH exposure. In summary, pretreatment with CoQ10 can inhibit mitochondrial depolarization, caspase activation, and cell apoptosis. These findings support the proposition that CoQ10 plays an antiapoptotic role in corneal fibroblasts after ethanol exposure
- …