117 research outputs found
Effects of external nutrient sources and extreme weather events on the nutrient budget of a Southern European coastal lagoon
The seasonal and annual nitrogen (N), phosphorus (P), and carbon (C) budgets of the mesotidal Ria Formosa lagoon, southern Portugal, were estimated to reveal the main inputs and outputs, the seasonal patterns, and how they may influence the ecological functioning of the system. The effects of extreme weather events such as long-lasting strong winds causing upwelling and strong rainfall were assessed. External nutrient inputs were quantified; ocean exchange was assessed in 24-h sampling campaigns, and final calculations were made using a hydrodynamic model of the lagoon. Rain and stream inputs were the main freshwater sources to the lagoon. However, wastewater treatment plant and groundwater discharges dominated nutrient input, together accounting for 98, 96, and 88 % of total C, N, and P input, respectively. Organic matter and nutrients were continuously exported to the ocean. This pattern was reversed following extreme events, such as strong winds in early summer that caused upwelling and after a period of heavy rainfall in late autumn. A principal component analysis (PCA) revealed that ammonium and organic N and C exchange were positively associated with temperature as opposed to pH and nitrate. These variables reflected mostly the benthic lagoon metabolism, whereas particulate P exchange was correlated to Chl a, indicating that this was more related to phytoplankton dynamics. The increase of stochastic events, as expected in climate change scenarios, may have strong effects on the ecological functioning of coastal lagoons, altering the C and nutrient budgets.Portuguese Science and Technology Foundation (FCT) [POCI/MAR/58427/2004, PPCDT/MAR/58427/2004]; Portuguese Science and Technology Foundation (FCT
Life expectancy after 2015 of adults with HIV on long-term antiretroviral therapy in Europe and North America: a collaborative analysis of cohort studies
BACKGROUND: The life expectancy of people with HIV taking antiretroviral therapy (ART) has increased substantially over the past 25 years. Most previous studies of life expectancy were based on data from the first few years after starting ART, when mortality is highest. However, many people with HIV have been successfully treated with ART for many years, and up-to-date prognosis data are needed. We aimed to estimate life expectancy in adults with HIV on ART for at least 1 year in Europe and North America from 2015 onwards. METHODS: We used data for people with HIV taking ART from the Antiretroviral Therapy Cohort Collaboration and the UK Collaborative HIV Cohort Study. Included participants started ART between 1996 and 2014 and had been on ART for at least 1 year by 2015, or started ART between 2015 and 2019 and survived for at least 1 year; all participants were aged at least 16 years at ART initiation. We used Poisson models to estimate the associations between mortality and demographic and clinical characteristics, including CD4 cell count at the start of follow-up. We also estimated the remaining years of life left for people with HIV aged 40 years who were taking ART, and stratified these estimates by variables associated with mortality. These estimates were compared with estimates for years of life remaining in a corresponding multi-country general population. FINDINGS: Among 206 891 people with HIV included, 5780 deaths were recorded since 2015. We estimated that women with HIV at age 40 years had 35·8 years (95% CI 35·2-36·4) of life left if they started ART before 2015, and 39·0 years (38·5-39·5) left if they started ART after 2015. For men with HIV, the corresponding estimates were 34·5 years (33·8-35·2) and 37·0 (36·5-37·6). Women with CD4 counts of fewer than 49 cells per μL at the start of follow-up had an estimated 19·4 years (18·2-20·5) of life left at age 40 years if they started ART before 2015 and 24·9 years (23·9-25·9) left if they started ART after 2015. The corresponding estimates for men were 18·2 years (17·1-19·4) and 23·7 years (22·7-24·8). Women with CD4 counts of at least 500 cells per μL at the start of follow-up had an estimated 40·2 years (39·7-40·6) of life left at age 40 years if they started ART before 2015 and 42·0 years (41·7-42·3) left if they started ART after 2015. The corresponding estimates for men were 38·0 years (37·5-38·5) and 39·2 years (38·7-39·7). INTERPRETATION: For people with HIV on ART and with high CD4 cell counts who survived to 2015 or started ART after 2015, life expectancy was only a few years lower than that in the general population, irrespective of when ART was started. However, for people with low CD4 counts at the start of follow-up, life-expectancy estimates were substantially lower, emphasising the continuing importance of early diagnosis and sustained treatment of HIV. FUNDING: US National Institute on Alcohol Abuse and Alcoholism and UK Medical Research Council
Target Site Recognition by a Diversity-Generating Retroelement
Diversity-generating retroelements (DGRs) are in vivo sequence diversification machines that are widely distributed in bacterial, phage, and plasmid genomes. They function to introduce vast amounts of targeted diversity into protein-encoding DNA sequences via mutagenic homing. Adenine residues are converted to random nucleotides in a retrotransposition process from a donor template repeat (TR) to a recipient variable repeat (VR). Using the Bordetella bacteriophage BPP-1 element as a prototype, we have characterized requirements for DGR target site function. Although sequences upstream of VR are dispensable, a 24 bp sequence immediately downstream of VR, which contains short inverted repeats, is required for efficient retrohoming. The inverted repeats form a hairpin or cruciform structure and mutational analysis demonstrated that, while the structure of the stem is important, its sequence can vary. In contrast, the loop has a sequence-dependent function. Structure-specific nuclease digestion confirmed the existence of a DNA hairpin/cruciform, and marker coconversion assays demonstrated that it influences the efficiency, but not the site of cDNA integration. Comparisons with other phage DGRs suggested that similar structures are a conserved feature of target sequences. Using a kanamycin resistance determinant as a reporter, we found that transplantation of the IMH and hairpin/cruciform-forming region was sufficient to target the DGR diversification machinery to a heterologous gene. In addition to furthering our understanding of DGR retrohoming, our results suggest that DGRs may provide unique tools for directed protein evolution via in vivo DNA diversification
Muscle-Specific Adaptations, Impaired Oxidative Capacity and Maintenance of Contractile Function Characterize Diet-Induced Obese Mouse Skeletal Muscle
BACKGROUND:The effects of diet-induced obesity on skeletal muscle function are largely unknown, particularly as it relates to changes in oxidative metabolism and morphology. PRINCIPAL FINDINGS:Compared to control fed mice, mice fed a high fat diet (HFD; 60% kcal: fat) for 8 weeks displayed increased body mass and insulin resistance without overt fasting hyperglycemia (i.e. pre-diabetic). Histological analysis revealed a greater oxidative potential in the HFD gastrocnemius/plantaris (increased IIA, reduced IIB fiber-type percentages) and soleus (increased I, IIA cross-sectional areas) muscles, but no change in fiber type percentages in tibialis anterior muscles compared to controls. Intramyocellular lipid levels were significantly increased relative to control in HFD gastrocnemius/plantaris, but were similar to control values in the HFD soleus. Using a novel, single muscle fiber approach, impairments in complete palmitate and glucose oxidation (72.8+/-6.6% and 61.8+/-9.1% of control, respectively; p<0.05) with HFD were detected. These reductions were consistent with measures made using intact extensor digitorum longus and soleus muscles. Compared to controls, no difference in succinate dehydrogenase or citrate synthase enzyme activities were observed between groups in any muscle studied, however, short-chain fatty acyl CoA dehydrogenase (SCHAD) activity was elevated in the HFD soleus, but not tibialis anterior muscles. Despite these morphological and metabolic alterations, no significant difference in peak tetanic force or low-frequency fatigue rates were observed between groups. CONCLUSIONS:These findings indicate that HFD induces early adaptive responses that occur in a muscle-specific pattern, but are insufficient to prevent impairments in oxidative metabolism with continued high-fat feeding. Moreover, the morphological and metabolic changes which occur with 8 weeks of HFD do not significantly impact muscle contractile properties
DNA Adenine Methylation Is Required to Replicate Both Vibrio cholerae Chromosomes Once per Cell Cycle
DNA adenine methylation is widely used to control many DNA transactions, including replication. In Escherichia coli, methylation serves to silence newly synthesized (hemimethylated) sister origins. SeqA, a protein that binds to hemimethylated DNA, mediates the silencing, and this is necessary to restrict replication to once per cell cycle. The methylation, however, is not essential for replication initiation per se but appeared so when the origins (oriI and oriII) of the two Vibrio cholerae chromosomes were used to drive plasmid replication in E. coli. Here we show that, as in the case of E. coli, methylation is not essential for oriI when it drives chromosomal replication and is needed for once-per-cell-cycle replication in a SeqA-dependent fashion. We found that oriII also needs SeqA for once-per-cell-cycle replication and, additionally, full methylation for efficient initiator binding. The requirement for initiator binding might suffice to make methylation an essential function in V. cholerae. The structure of oriII suggests that it originated from a plasmid, but unlike plasmids, oriII makes use of methylation for once-per-cell-cycle replication, the norm for chromosomal but not plasmid replication
Characterization and Utilization of the Flexor Digitorum Brevis for Assessing Skeletal Muscle Function
Abstract Background The ability to assess skeletal muscle function and delineate regulatory mechanisms is essential to uncovering therapeutic approaches that preserve functional independence in a disease state. Skeletal muscle provides distinct experimental challenges due to inherent differences across muscle groups, including fiber type and size that may limit experimental approaches. The flexor digitorum brevis (FDB) possesses numerous properties that offer the investigator a high degree of experimental flexibility to address specific hypotheses. To date, surprisingly few studies have taken advantage of the FDB to investigate mechanisms regulating skeletal muscle function. The purpose of this study was to characterize and experimentally demonstrate the value of the FDB muscle for scientific investigations. Methods First, we characterized the FDB phenotype and provide reference comparisons to skeletal muscles commonly used in the field. We developed approaches allowing for experimental assessment of force production, in vitro and in vivo microscopy, and mitochondrial respiration to demonstrate the versatility of the FDB. As proof-of principle, we performed experiments to alter force production or mitochondrial respiration to validate the flexibility the FDB affords the investigator. Results The FDB is made up of small predominantly type IIa and IIx fibers that collectively produce less peak isometric force than the extensor digitorum longus (EDL) or soleus muscles, but demonstrates a greater fatigue resistance than the EDL. Unlike the other muscles, inherent properties of the FDB muscle make it amenable to multiple in vitro- and in vivo-based microscopy methods. Due to its anatomical location, the FDB can be used in cardiotoxin-induced muscle injury protocols and is amenable to electroporation of cDNA with a high degree of efficiency allowing for an effective means of genetic manipulation. Using a novel approach, we also demonstrate methods for assessing mitochondrial respiration in the FDB, which are comparable to the commonly used gastrocnemius muscle. As proof of principle, short-term overexpression of Pgc1α in the FDB increased mitochondrial respiration rates. Conclusion The results highlight the experimental flexibility afforded the investigator by using the FDB muscle to assess mechanisms that regulate skeletal muscle function
Cell Size and the Initiation of DNA Replication in Bacteria
In eukaryotes, DNA replication is coupled to the cell cycle through the actions of cyclin-dependent kinases and associated factors. In bacteria, the prevailing view, based primarily from work in Escherichia coli, is that growth-dependent accumulation of the highly conserved initiator, DnaA, triggers initiation. However, the timing of initiation is unchanged in Bacillus subtilis mutants that are ∼30% smaller than wild-type cells, indicating that achievement of a particular cell size is not obligatory for initiation. Prompted by this finding, we re-examined the link between cell size and initiation in both E. coli and B. subtilis. Although changes in DNA replication have been shown to alter both E. coli and B. subtilis cell size, the converse (the effect of cell size on DNA replication) has not been explored. Here, we report that the mechanisms responsible for coordinating DNA replication with cell size vary between these two model organisms. In contrast to B. subtilis, small E. coli mutants delayed replication initiation until they achieved the size at which wild-type cells initiate. Modest increases in DnaA alleviated the delay, supporting the view that growth-dependent accumulation of DnaA is the trigger for replication initiation in E. coli. Significantly, although small E. coli and B. subtilis cells both maintained wild-type concentration of DnaA, only the E. coli mutants failed to initiate on time. Thus, rather than the concentration, the total amount of DnaA appears to be more important for initiation timing in E. coli. The difference in behavior of the two bacteria appears to lie in the mechanisms that control the activity of DnaA
Complete Genome Sequence of the Complex Carbohydrate-Degrading Marine Bacterium, Saccharophagus degradans Strain 2-40T
The marine bacterium Saccharophagus degradans strain 2-40 (Sde 2-40) is emerging as a vanguard of a recently discovered group of marine and estuarine bacteria that recycles complex polysaccharides. We report its complete genome sequence, analysis of which identifies an unusually large number of enzymes that degrade >10 complex polysaccharides. Not only is this an extraordinary range of catabolic capability, many of the enzymes exhibit unusual architecture including novel combinations of catalytic and substrate-binding modules. We hypothesize that many of these features are adaptations that facilitate depolymerization of complex polysaccharides in the marine environment. This is the first sequenced genome of a marine bacterium that can degrade plant cell walls, an important component of the carbon cycle that is not well-characterized in the marine environment
- …