464 research outputs found

    The use of sublimable chlorotricarbonyl bis(phenylimino)acenaphthene rhenium(I) complexes as photosensitizers in bulk-heterojunction photovoltaic devices

    Get PDF
    A series of sublimable substituted chlorotricarbonyl bis(phenylimino)acenaphthene rhenium(I) complexes was synthesized and used in the fabrication of photovoltaic devices. The hole and electron carrier mobilities of these complexes are in the order of 10-3 to 10-4 cm2 V-1 s-1. Heterojunction devices with CuPc/complex/C60 (CuPc = copper phthalocyanine) as the active layer and bulk heterojunction devices with complex:C60 as the active layer were fabricated. The rhenium complexes function as photosensitizer in the devices, and exhibit optical absorption in the region between 500 and 550 nm within which other components in the device do not absorb. Other devices with hole transport materials, exciton blocking materials, and different active layer thickness were also fabricated. Variation of substitution groups in the ligand did not show significant difference in device performance. The best power conversion efficiency of the devices was measured to be 1.29% under illumination of AM1.5 simulated solar light. © 2009 Elsevier B.V. All rights reserved.postprin

    Observation of an electrically tunable band gap in trilayer graphene

    Full text link
    A striking feature of bilayer graphene is the induction of a significant band gap in the electronic states by the application of a perpendicular electric field. Thicker graphene layers are also highly attractive materials. The ability to produce a band gap in these systems is of great fundamental and practical interest. Both experimental and theoretical investigations of graphene trilayers with the typical ABA layer stacking have, however, revealed the lack of any appreciable induced gap. Here we contrast this behavior with that exhibited by graphene trilayers with ABC crystallographic stacking. The symmetry of this structure is similar to that of AB stacked graphene bilayers and, as shown by infrared conductivity measurements, permits a large band gap to be formed by an applied electric field. Our results demonstrate the critical and hitherto neglected role of the crystallographic stacking sequence on the induction of a band gap in few-layer graphene.Comment: 10 pages, 5 figures, including the supplementary information on the electron-hole asymmetry of ABA-stacked trilaye

    Enhancing photosensitivity of carbon nanotubes by modification with metal containing block copolymers

    Get PDF
    Session S3 - Nano- and Bio-systems: abstract no. O3-4Carbon nanotubes exhibit highly promising potentials in applications such as optoelectronics, advanced composites, sensing, and biomedics. They have been demonstrated to be the key materials in various optoelectronic devices such as field effect transistors, photo switching, light sensing, and light emitters. In order to disperse carbon nanotubes in solution, chemical modification of nanotube surface or surfactants have to be used. Here, we report the use of a multifunctional metal containing block copolymers for dispersing carbon nanotubes and modification of their photosensitivity....postprintThe 12th International Conference on Electronic and Related Properties of Organic Systems (ERPOS-12), Vilnius, Lithuania, 11-13 July 2011. In Abstract book of ERPOS-12, 2011, p. 2

    Integrated multichannel electrochemical–quartz crystal microbalance sensors for liquid sensing

    Get PDF
    This paper highlights the design, simulation and fabrication of an array of twelve integrated electrochemical – quartz crystal microbalance (IEQCM) sensors on a single substrate for liquid sensing. Integration of both measurement techniques is made possible by combining the three electrode electrochemical device with the top and bottom electrodes for the microbalance. Important design parameters such as the working electrode radius and gap spacing, were studied using both theoretical calculations and COMSOL Multiphysics R finite element simulations. The sensor’s working electrode radius affects the magnitude of the frequency response while the gap affects the capacitance and current density which are important for electrochemical measurements. It was found that the best values for the working electrode radius was 2 mm and gap spacing was 0.5 mm. The sensors were fabricated using microfabrication techniques for the gold electrode and screen printing techniques for the reference electrode. Water contact angle, atomic force microscopy, and scanning electron microscope were utilized to study the surface roughness of the IEQCM sensor. IEQCM has a low contact angle of 53.0 ± 1 ◦ and low surface roughness of 1.92nm. For liquid sensing, an array of circular chambers were fabricated using polydimethylsiloxane (PDMS) and placed on top of the quartz substrate for liquid testing. Electrochemical measurements and cyclic voltammetry were performed using the sensor in ferri-ferrocyanide and phosphate buffered saline solution to study the function of scan rates on the peak current with respect to the potential difference. For mass sensing measurements, liquid water droplets of 1uL – 10 uL were placed onto the sensing surface and the change in resonance frequencies of the sensors were measured. These resonance frequency changes can be converted in mass change/area in accordance to the advanced Sauerbrey equation. The multichannel IEQCM sensor shows good potential as a parallel sensor for both biosensing and environmental applications

    Understanding the Treatment Algorithm of Patients with Metastatic Pancreatic Neuroendocrine Neoplasms: A Single-Institution Retrospective Analysis Comparing Outcomes of Chemotherapy, Molecular Targeted Therapy, and Peptide Receptor Radionuclide Therapy in 255 Patients

    Get PDF
    Background The number of therapeutic options for patients with pancreatic neuroendocrine neoplasms (PNEN) has increased, but the optimal therapeutic algorithm has not been defined due to lack of randomised trials comparing different modalities. Methods We performed a retrospective study in patients with metastatic PNEN treated with ≥1 line of systemic therapy. The relationship between baseline characteristics, treatment type and time to treatment failure (TTF), time to progression (TTP) and overall survival (OS) was analysed using the Kaplan-Meier method. Univariate and multivariate analyses were performed using the Cox proportional hazards model. Results Two hundred and fifty-five patients with metastatic PNEN had 491 evaluable lines of therapy. Independent predictors of TTF included treatment type, Ki-67, tumour grade and chromogranin A. To reduce selection bias, a subgroup of 114 patients with grade 2 (G2) metastatic pancreatic neuroendocrine tumours (PNET) was analysed separately. These patients had received 234 lines of treatment (105 chemotherapy, 82 molecular targeted therapy, and 47 peptide receptor radionuclide therapy [PRRT]). In the G2 cohort, TTF and TTP were superior for PRRT compared with both chemotherapy and molecular targeted therapy. OS in the G2 cohort was also superior for those that had received PRRT compared with those that had not (median 84 vs 56 months; HR 0.55, 95%CI 0.31-0.98, p=0.04). Conclusions This study suggests that PRRT is associated with superior clinical outcomes relative to other systemic therapies for G2 metastatic PNET. Prospective studies are required to confirm these observations

    Microscopic Polarization in Bilayer Graphene

    Full text link
    Bilayer graphene has drawn significant attention due to the opening of a band gap in its low energy electronic spectrum, which offers a promising route to electronic applications. The gap can be either tunable through an external electric field or spontaneously formed through an interaction-induced symmetry breaking. Our scanning tunneling measurements reveal the microscopic nature of the bilayer gap to be very different from what is observed in previous macroscopic measurements or expected from current theoretical models. The potential difference between the layers, which is proportional to charge imbalance and determines the gap value, shows strong dependence on the disorder potential, varying spatially in both magnitude and sign on a microscopic level. Furthermore, the gap does not vanish at small charge densities. Additional interaction-induced effects are observed in a magnetic field with the opening of a subgap when the zero orbital Landau level is placed at the Fermi energy

    α-Synuclein Suppression by Targeted Small Interfering RNA in the Primate Substantia Nigra

    Get PDF
    The protein α-synuclein is involved in the pathogenesis of Parkinson's disease and other neurodegenerative disorders. Its toxic potential appears to be enhanced by increased protein expression, providing a compelling rationale for therapeutic strategies aimed at reducing neuronal α-synuclein burden. Here, feasibility and safety of α-synuclein suppression were evaluated by treating monkeys with small interfering RNA (siRNA) directed against α-synuclein. The siRNA molecule was chemically modified to prevent degradation by exo- and endonucleases and directly infused into the left substantia nigra. Results compared levels of α-synuclein mRNA and protein in the infused (left) vs. untreated (right) hemisphere and revealed a significant 40–50% suppression of α-synuclein expression. These findings could not be attributable to non-specific effects of siRNA infusion since treatment of a separate set of animals with luciferase-targeting siRNA produced no changes in α-synuclein. Infusion with α-synuclein siRNA, while lowering α-synuclein expression, had no overt adverse consequences. In particular, it did not cause tissue inflammation and did not change (i) the number and phenotype of nigral dopaminergic neurons, and (ii) the concentrations of striatal dopamine and its metabolites. The data represent the first evidence of successful anti-α-synuclein intervention in the primate substantia nigra and support further development of RNA interference-based therapeutics

    Graphene plasmonics

    Full text link
    Two rich and vibrant fields of investigation, graphene physics and plasmonics, strongly overlap. Not only does graphene possess intrinsic plasmons that are tunable and adjustable, but a combination of graphene with noble-metal nanostructures promises a variety of exciting applications for conventional plasmonics. The versatility of graphene means that graphene-based plasmonics may enable the manufacture of novel optical devices working in different frequency ranges, from terahertz to the visible, with extremely high speed, low driving voltage, low power consumption and compact sizes. Here we review the field emerging at the intersection of graphene physics and plasmonics.Comment: Review article; 12 pages, 6 figures, 99 references (final version available only at publisher's web site
    • …
    corecore