26 research outputs found

    Highly Sensitive Fluorescence Probe Based on Functional SBA-15 for Selective Detection of Hg2+

    Get PDF
    An inorganic–organic hybrid fluorescence chemosensor (DA/SBA-15) was prepared by covalent immobilization of a dansylamide derivative into the channels of mesoporous silica material SBA-15 via (3-aminopropyl)triethoxysilane (APTES) groups. The primary hexagonally ordered mesoporous structure of SBA-15 was preserved after the grafting procedure. Fluorescence characterization shows that the obtained inorganic–organic hybrid composite is highly selective and sensitive to Hg2+ detection, suggesting the possibility for real-time qualitative or quantitative detection of Hg2+ and the convenience for potential application in toxicology and environmental science

    Contrast Adaptation Contributes to Contrast-Invariance of Orientation Tuning of Primate V1 Cells

    Get PDF
    BACKGROUND: Studies in rodents and carnivores have shown that orientation tuning width of single neurons does not change when stimulus contrast is modified. However, in these studies, stimuli were presented for a relatively long duration (e. g., 4 seconds), making it possible that contrast adaptation contributed to contrast-invariance of orientation tuning. Our first purpose was to determine, in marmoset area V1, whether orientation tuning is still contrast-invariant with the stimulation duration is comparable to that of a visual fixation. METHODOLOGY/PRINCIPAL FINDINGS: We performed extracellular recordings and examined orientation tuning of single-units using static sine-wave gratings that were flashed for 200 msec. Sixteen orientations and three contrast levels, representing low, medium and high values in the range of effective contrasts for each neuron, were randomly intermixed. Contrast adaptation being a slow phenomenon, cells did not have enough time to adapt to each contrast individually. With this stimulation protocol, we found that the tuning width obtained at intermediate contrast was reduced to 89% (median), and that at low contrast to 76%, of that obtained at high contrast. Therefore, when probed with briefly flashed stimuli, orientation tuning is not contrast-invariant in marmoset V1. Our second purpose was to determine whether contrast adaptation contributes to contrast-invariance of orientation tuning. Stationary gratings were presented, as previously, for 200 msec with randomly varying orientations, but the contrast was kept constant within stimulation blocks lasting >20 sec, allowing for adaptation to the single contrast in use. In these conditions, tuning widths obtained at low contrast were still significantly less than at high contrast (median 85%). However, tuning widths obtained with medium and high contrast stimuli no longer differed significantly. CONCLUSIONS/SIGNIFICANCE: Orientation tuning does not appear to be contrast-invariant when briefly flashed stimuli vary in both contrast and orientation, but contrast adaptation partially restores contrast-invariance of orientation tuning

    Fluorescent ion-imprinted polymers for selective Cu(II) optosensing

    No full text
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)This paper describes the synthesis and characterization of a fluorescent ion-imprinted polymer (IIP) for selective determination of copper ions in aqueous samples. The IIP has been prepared using a novel functional monomer, 4-[(E)-2-(4'-methyl-2,2'-bipyridin-4-yl)vinyl]phenyl methacrylate (abbreviated as BSOMe) that has been spectroscopically characterized in methanolic solution, in the absence and in the presence of several metal ions, including Cd(II), Cu(II), Hg(II), Ni(II), Pb(II), and Zn(II). The stability constant (2.04 x 10(8) mol(-2) l(2)) and stoichiometry (L2M) of the BSOMe complex with Cu(II) were extracted thereof. Cu(II)-IIPs were prepared by radical polymerization using stoichiometric amounts of the fluorescent monomer and the template metal ion. The resulting cross-linked network did not show any leaching of the immobilized ligand allowing determination of Cu(II) in aqueous samples by fluorescence quenching measurements. Several parameters affecting optosensor performance have been optimized, including sample pH, ionic strength, or polymer regeneration for online analysis of water samples. The synthesized Cu(II)-IIP exhibits a detection limit of 0.04 mu mol l(-1) for the determination of Cu(II) in water samples with a reproducibility of 3%, exhibiting an excellent selectivity towards the template ion over other metal ions with the same charge and close ionic radius. The IIP-based optosensor has been repeatedly used and regenerated for more than 50 cycles without a significant decrease in the luminescent properties and binding affinity of the sensing phase.4021032533260Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Spanish Ministry of EducationMinistry of Science and Innovation [PHB2005-0030-PC, CTQ2009-14565-C03]Complutense University [GR58-08-910072]Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES [CAPES/DGU 125/06]Ministry of Science and Innovation [PHB2005-0030-PC, CTQ2009-14565-C03]Complutense University [GR58-08-910072

    Analysis of alternariol and alternariol monomethyl ether in foodstuffs by molecularly imprinted solid-phase extraction and ultra-high-performance liquid chromatography tandem mass spectrometry

    No full text
    Molecularly imprinted porous polymer microspheres selective to Alternaria mycotoxins, alternariol (AOH) and alternariol monomethyl ether (AME), were synthesized and applied to the extraction of both mycotoxins in food samples. The polymer was prepared using 4-vinylpiridine (VIPY) and methacrylamide (MAM) as functional monomers, ethylene glycol dimethacrylate (EDMA) as cross-linker and 3,8,9-trihydroxy-6H-dibenzo[b, d] pyran-6- one (S2) as AOH surrogate template. A molecularly imprinted solid phase extraction (MISPE) method has been optimized for the selective isolation of the mycotoxins from aqueous samples coupled to HPLC with fluorescence (lambda(ex)= 258 nm;lambda(em) = 440 nm) or MS/MS analysis. The MISPE method was validated by UPLC-MS/MS for the determination of AOH and AME in tomato juice and sesame oil based on the European Commission Decision 2002/657/EC. Method performance was satisfactory with recoveries from 92.5% to 106.2% and limits of quantification within the 1.1-2.8 mu g kg(-1) range in both samples

    Nanoscopic optical sensors based on functional supramolecular hybrid materials

    Full text link
    [EN] This review highlights how the combination of supramolecular principles and nanoscopic solid structures enables the design of new hybrid sensing ensembles with improved sensitivity and/or selectivity and for the targeting of analytes for which selectivity is hard to achieve by conventional methods. Such ideas are bridging the gap between molecules, materials sciences and nanotechnology. Relevant examples will be detailed, taking into account functional aspects such as (1) enhanced coordination of functionalized solids, (2) enhanced signalling through preorganization, (3) signalling by assembly-disassembly of nanoscopic objects, (4) biomimetic probes utilizing discrimination by polarity and size and (5) distinct switching and gating protocols. These strategies are opening new prospects for sensor research and signalling paradigms at the frontier between nanotechnology, smart materials and supramolecular chemistry. © 2010 Springer-Verlag.Financial support from the Ministerio de Ciencia y Tecnologia (project MAT2009-14564-C04), the Generalitat Valencia (project PROMETEO/2009/016) and the Innovationsfonds (BAM/Bundesministerium fur Wirtschaft und Technologie) is gratefully acknowledged.Martínez Mañez, R.; Sancenón Galarza, F.; Hecht, M.; Biyikal, M.; Rurack, K. (2011). Nanoscopic optical sensors based on functional supramolecular hybrid materials. Analytical and Bioanalytical Chemistry. 399:55-74. https://doi.org/10.1007/s00216-010-4198-2S5574399Lehn JM (1995) Supramolecular chemistry: concepts and perspectives. VCH, WeinheimSteed JW, Atwood JL (2000) Supramolecular chemistry. Wiley, HobokenRurack K, Martínez-Máñez R (eds) (2010) The supramolecular chemistry of organic-inorganic hybrid materials. Wiley, HobokenArduini A, Demuru D, Pochini A, Secchi A (2005) Chem Commun 645Tshikhudo TR, Demuru D, Wang Z, Brust M, Secchi A, Arduini A, Pochini A (2005) Angew Chem Int Ed 44:2913Beer PD, Cormode DP, Davis JJ (2004) Chem Commun 414Cormode DP, Davis JJ, Beer PD (2008) J Inorg Organomet Polym 18:32Descalzo AB, Jiménez D, Marcos MD, Martínez-Máñez R, Soto J, El Haskouri J, Guillem C, Beltrán D, Amorós P, Borrachero MV (2002) Adv Mater 14:966Descalzo AB, Marcos MD, Martínez-Máñez R, Soto J, Beltrán D, Amorós P (2005) J Mater Chem 15:2721Walcarius A, Mercier L (2010) J Mater Chem 20:4478Antochshuk V, Olkhovyk O, Jaroniec M, Park IS, Ryoo R (2003) Langmuir 19:3031Kim Y, Lee B, Yi J (2004) Sep Sci Technol 39:1427Olkhovyk O, Jaroniec M (2005) Adsorption 11:685Lee SJ, Bae DR, Han WS, Lee SS, Jung JH (2008) Eur J Inorg Chem 1559Lee HY, Bae DR, Park JC, Song H, Han WS, Jung JH (2009) Angew Chem Int Ed 48:1239Ros-Lis JV, Casasús R, Comes M, Coll C, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Amorós P, El Haskouri J, Garró N, Rurack K (2008) Chem Eur J 14:8267El-Safty SA (2009) J Mater Sci 44:6764Wang C, Tao S, Wei W, Meng C, Liu F, Han M (2010) J Mater Chem 20:4635Lee MH, Lee SJ, Jung JH, Lim H, Kim JS (2007) Tetrahedron 63:12087Métivier R, Leray I, Lebeau B, Valeur B (2005) J Mater Chem 15:2965Lee SJ, Lee JE, Seo J, Jeong IY, Lee SS, Jung JH (2007) Adv Funct Mater 17:3441El-Safty SA, Prabhakaran D, Yoshimichi Y, Mizukami F (2008) Adv Funct Mater 18:1739Gao L, Wang JQ, Huang L, Fan XX, Zhu JH, Wang Y, Zou ZG (2007) Inorg Chem 46:10287Zhang H, Zhang P, Ye K, Sun Y, Jiang S, Wang Y, Pang W (2006) J Lumin 117:68Li L-L, Sun H, Fang C-J, Xu J, Jin J-Y, Yan C-H (2007) J Mater Chem 17:4492Wang J-Q, Huang L, Xue M, Wang Y, Gao L, Zhu JH, Zou Z (2008) J Phys Chem C 112:5014Gao L, Wang Y, Wang J, Huang L, Shi L, Fan X, Zou Z, Yu T, Zhu M, Li Z (2006) Inorg Chem 45:6844Balaji T, Sasidharan M, Matsunaga H (2006) Anal Bioanal Chem 384:488Balaji T, El-Safty SA, Matsunaga H, Hanaoka T, Mizukami F (2006) Angew Chem Int Ed 45:7202El-Safty SA, Ismail AA, Matsunaga H, Mizukami F (2007) Chem Eur J 13:9245El-Safty SA, Prabhakaran D, Ismail AA, Matsunaga H, Mizukami F (2007) Adv Funct Mater 17:3731El-Safty SA, Ismail AA, Matsunaga H, Nanjo H, Mizukami F (2008) J Phys Chem C 112:4825El-Safty SA, Prabhakaran D, Ismail AA, Matsunaga H, Mizukami F (2008) Chem Mater 20:2644El-Safty SA, Ismail AA, Matsunaga H, Hanaoka T, Mizukami F (2008) Adv Funct Mater 18:1485Wirnsberger G, Scott BJ, Stucky GD (2001) Chem Commun 119Comes M, Rodríguez-López G, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Villaescusa LA, Amorós P, Beltrán D (2005) Angew Chem Int Ed 44:2918Comes M, Aznar E, Moragues M, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Villaescusa LA, Gil L, Amorós P (2009) Chem Eur J 15:9024Comes M, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Villaescusa LA, Amorós P (2008) Chem Commun 3639Wada A, Tamaru S, Ikeda M, Hamachi I (2009) J Am Chem Soc 131:5321Montalti M, Prodi L, Zaccheroni N, Falini G (2002) J Am Chem Soc 124:13540Montalti M, Prodi L, Zaccheroni N (2005) J Mater Chem 15:2810Ding L, Cui X, Han Y, Lu F, Fang Y (2007) J Photochem Photobiol A 186:143Teolato P, Rampazzo E, Arduini M, Mancin F, Tecilla P, Tonellato U (2007) Chem Eur J 13:2238Bonacchi S, Rampazzo E, Montalti M, Prodi L, Zaccheroni N, Mancin F, Teolato P (2008) Langmuir 24:8387Zheng J, Xiao C, Fei Q, Li M, Wang B, Feng G, Yu H, Huan Y, Song Z (2010) Nanotechnology 21:045501Brasola E, Mancin F, Rampazzo E, Tecilla P, Tonellato U (2003) Chem Commun 3026Rampazzo E, Brasola E, Marcuz S, Mancin F, Tecilla P, Tonellato U (2005) J Mater Chem 15:2687Arduini M, Mancin F, Tecilla P, Tonellato U (2007) Langmuir 23:8632Gao D, Wang Z, Liu B, Ni L, Wu M, Zhang Z (2008) Anal Chem 80:8545Arduini M, Marcuz S, Montolli M, Rampazzo E, Mancin F, Gross S, Armelao L, Tecilla P, Tonellato U (2005) Langmuir 21:9314Montalti M, Prodi L, Zaccheroni N, Battistini G, Marcuz S, Mancin F, Rampazzo E, Tonellato U (2006) Langmuir 22:5877Méallet-Renault R, Pansu R, Amigoni-Gerbier S, Larpent C (2004) Chem Commun 2344Gouanvé F, Schuster T, Allard E, Méallet-Renault R, Larpent C (2007) Adv Funct Mater 17:2746Doyle EL, Hunter CA, Philips HC, Webb SJ, Williams NH (2003) J Am Chem Soc 125:4593Lee SJ, Lee SS, Lah MS, Hong J-M, Jung JH (2006) Chem Commun 4539Mu L, Shi W, Chang JC, Lee S-T (2008) Nano Lett 8:104Crego-Calama M, Reinhoudt DN (2001) Adv Mater 13:1171Basabe-Desmonts L, Beld J, Zimmerman RS, Hernando J, Mela P, García Parajó MF, van Hulst NF, van den Berg A, Reinhoudt DN, Crego-Calama M (2004) J Am Chem Soc 126:7293Zimmerman R, Basabe-Desmonts L, van der Baan F, Reinhoudt DN, Crego-Calama M (2005) J Mater Chem 15:2772Zanarini S, Rampazzo E, Della Ciana L, Marcaccio M, Marzocchi E, Montalti M, Paolucci F, Prodi L (2009) J Am Chem Soc 131:2260Daniel M-C, Astruc D (2004) Chem Rev 104:293Kreibig U, Vollmer M (1998) Optical properties of metal clusters. Springer, BerlinWang Z, Ma L (2009) Coord Chem Rev 253:1607Ma L-N, Liu D-J, Wang Z-X (2010) Chin J Anal Chem 38:1Rosi NL, Mirkin CA (2005) Chem Rev 105:1547Katz E, Willner I (2004) Angew Chem Int Ed 43:6042Lin SY, Wu SH, Chen CH (2006) Angew Chem Int Ed 45:4948Liu J, Lu Y (2005) J Am Chem Soc 127:12677Wang Z, Lee JH, Lu Y (2008) Adv Mater 20:3263Yoosaf K, Ipe BI, Suresh CH, Thomas KG (2007) J Phys Chem C 111:12839Huang K-W, Yu C-J, Tseng W-L (2010) Biosens Bioelectron 25:984Lin S-Y, Liu S-W, Lin C-M, Chen C-H (2002) Anal Chem 74:330Lin S-Y, Chen CH, Lin CM, Hsu HF (2005) Anal Chem 77:4821Huang C-C, Chang H-T (2007) Chem Commun 1215Fan Y, Long YF, Li YF (2009) Anal Chim Acta 653:207Tan Z-Q, Liu J-F (2010) Anal Chem 82:4222Wang H, Wang Y, Jin J, Yang R (2008) Anal Chem 80:9021Xu X, Wang J, Jiao K, Yang X (2009) Biosens Bioelectron 24:3153Liu ZD, Li YF, Ling J, Huang CZ (2009) Environ Sci Technol 43:5022Chen W, Tu X, Guo X (2009) Chem Commun 1736Li B, Du Y, Dong S (2009) Anal Chim Acta 644:78Han C, Zhang L, Li H (2009) Chem Commun 3545Wu T, Liu C, Tan KJ, Hu PP, Huang CZ (2010) Anal Bioanal Chem 397:1273Chen S-J, Chang H-T (2004) Anal Chem 76:3727Chen Z, Luo S, Liu C, Cai Q (2009) Anal Bional Chem 395:489Wang Y, Wang J, Yang F, Yang X (2010) Anal Sci 26:545Chen Z, He Y, Luo S, Lin H, Chen Y, Sheng P, Li J, Chen B, Liu C, Cai Q (2010) Analyst 135:1066Patel G, Menon S (2009) Chem Commun 3563Pavlov V, Xiao Y, Willner I (2005) Nano Lett 5:649Zhang Y, Li B, Chen X (2010) Microchim Acta 168:107Han C, Zeng L, Li H, Xie G (2009) Sens Actuators B 137:704Chi H, Liu B, Guan G, Zhang Z, Han M-Y (2010) Analyst 135:1070Lu C, Zhang N, Li J, Li Q (2010) Talanta 81:698–702Watanabe S, Sonobe M, Arai M, Tazume Y, Matsuo T, Nakamura T, Yoshida K (2002) Chem Commun 2866Daniel WL, Han MS, Lee J-S, Mirkin CA (2009) J Am Chem Soc 131:6362Kubo Y, Uchida S, Kemmochi Y, Okubo T (2005) Tetrahedron Lett 46:4369Kado S, Furui A, Akiyama Y, Nakahara Y, Kimura K (2009) Anal Sci 25:261Kumar A, Chhatra RK, Pandey PS (2010) Org Lett 12:24Stangl J, Holý V, Bauer G (2004) Rev Mod Phys 76:725Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025Rogach AL, Eychmüller A, Hickey SG, Kershaw SV (2007) Small 3:536Han C, Li H (2010) Anal Bioanal Chem 397:1437Costa-Fernández JM, Pereiro R, Sanz-Medel A (2006) Trends Anal Chem 25:207Costa-Fernandez JM (2006) Anal Bioanal Chem 384:37Willard DM, Mutschler T, Yu M, Jung J, Orden AV (2006) Anal Bioanal Chem 384:564Callan JF, de Silva AP, Mulrooney RC, Mc Caughan B (2007) J Inclusion Phenom Mol Recognit Chem 58:257Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Nat Mater 4:435Zhong Y, Kaji N, Tokeshi M, Baba Y (2007) Expert Rev Proteomics 4:565Li ZB, Cai W, Chen X (2007) J Nanosci Nanotechnol 7:2567Chen Y, Rosenzweig Z (2002) Anal Chem 74:5132Konishi K, Hiratani T (2006) Angew Chem Int Ed 45:5191Zhang L, Xu C, Li B (2009) Microchim Acta 166:61Liang J-G, Ai X-P, He Z-K, Pang D-W (2004) Analyst 129:619Lai Y, Yu Y, Zhong P, Wu J, Long Z, Liang C (2006) Anal Lett 39:1201Lai S, Chang X, Fu C (2009) Microchim Acta 165:39Chan Y-H, Chen J, Liu Q, Wark SE, Son DH, Batteas JD (2010) Anal Chem 82:3671Bo C, Ping Z (2005) Anal Bioanal Chem 381:986Tang B, Niu J, Yu C, Zhuo L, Ge J (2005) Chem Commun 4184Chen C-Y, Chen C-T, Lai C-W, Wu P-W, Wu K-C, Chou P-T, Chou Y-H, Chiu H-T (2006) Chem Commun 263Ruedas-Rama MJ, Hall EAH (2008) Anal Chem 80:8260Ge S, Zhang C, Zhu Y, Yu J, Zhang S (2010) Analyst 135:111Jin WJ, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2004) Anal Chim Acta 552:1Jin WJ, Fernández-Argüelles T, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2005) Chem Commun 883Lakowicz JR, Gryczynski I, Gryczynski Z, Murthy CJ (1999) J Phys Chem B 103:7613Li H, Han C, Zhang L (2008) J Mater Chem 18:4543Zhang B-H, Wu F-Y, Wu Y-M (2010) J Fluoresc 20:243Mulrooney RC, Singh N, Kaur N, Callan JF (2009) Chem Commun 686Cordes DB, Gamsey S, Singaram B (2006) Angew Chem Int Ed 45:3829Jin T, Fujii F, Sakata H, Tamura M, Kinjo M (2005) Chem Commun 4300Yan XQ, Shang ZB, Zhang Z, Wang Y, Jin WJ (2009) Luminescence 24:255Kuang R, Kuang X, Pan S, Zheng X, Duan J, Duan Y (2010) Microchim Acta 169:109Lin VS-Y, Lai C-Y, Huang J, Song S-A, Xu S (2001) J Am Chem Soc 123:11510Radu DR, Lai C-Y, Wiench JW, Pruski M, Lin VS-Y (2004) J Am Chem Soc 126:1640Descalzo AB, Rurack K, Weisshoff H, Martínez-Máñez R, Marcos MD, Amorós P, Hoffmann K, Soto J (2005) J Am Chem Soc 127:184Comes M, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Villaescusa LA, Amorós P, Beltrán D (2004) Adv Mater 16:1783Basurto S, Torroba T, Comes M, Martínez-Máñez R, Sancenón F, Villaescusa LA, Amorós P (2005) Org Lett 7:5469García-Acosta B, Comes M, Bricks JL, Kudinova MA, Kurdyukov VV, Tolmachev AI, Descalzo AB, Marcos MD, Martínez-Máñez R, Moreno A, Sancenón F, Soto J, Villaescusa LA, Rurack K, Barat JM, Escriche I, Amorós P (2006) Chem Commun 2239Comes M, Marcos MD, Martínez-Máñez R, Millán MC, Ros-Lis JV, Sancenón F, Soto J, Villaescusa LA (2006) Chem Eur J 12:2162Descalzo AB, Marcos MD, Monte C, Martínez-Máñez R, Rurack K (2007) J Mater Chem 17:4716Meinershagen JL, Bein TJ (1999) J Am Chem Soc 121:448Dickinson TA, White J, Kauer JS, Walt DR (1996) Nature 382:697Dickinson TA, Michael KL, Kauer JS, Walt DR (1999) Anal Chem 71:2192Tao S, Li G (2007) Colloid Polym Sci 285:721Bühlmann P, Aoki H, Xiao KP, Amemiya S, Tohda K, Umezawa Y (1998) Electroanalysis 10:1149Sugawara M, Hirano A, Bühlmann P, Umezawa Y (2002) Bull Chem Soc Jpn 75:187Umezawa Y, Aoki H (2004) Anal Chem 76:320ACliment E, Casasús R, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J (2008) Chem Commun 6531Climent E, Casasús R, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J (2009) Dalton Trans 4806Climent E, Calero P, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J (2009) Chem Eur J 15:1816Climent E, Martí A, Royo S, Martínez-Máñez R, Marcos MD, Sancenón F, Soto J, Costero AM, Gil S, Parra M (2010) Angew Chem Int Ed (in press)Dubach JM, Harjes DI, Clark HA (2007) J Am Chem Soc 129:8418Climent E, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Rurack K, Amorós P (2009) Angew Chem Int Ed 48:8519Casasús R, Aznar E, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Amorós P (2006) Angew Chem Int Ed 45:6661Coll C, Casasús R, Aznar E, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Amorós P (2007) Chem Commun 1957Aznar E, Coll C, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Amorós P, Cano J, Ruiz E (2009) Chem Eur J 15:6877Climent E, Bernardos A, Martínez-Máñez R, Maquieira A, Marcos MD, Pastor-Navarro N, Puchades R, Sancenón F, Soto J, Amorós P (2009) J Am Chem Soc 131:14075Suzuki D, Kawaguchi H (2006) Langmuir 22:3818Lee J, Kotov NA (2007) Nano Today 2:48Lee J, Govorov AO, Kotov NA (2005) Angew Chem Int Ed 44:7439Peng H, Stich MIJ, Yu J, Sun L-N, Fischer LH, Wolfbeis OS (2010) Adv Mater 22:716Laocharoensuk R, Bulbarello A, Hocevar SB, Mannino S, Ogorevc B, Wang J (2007) J Am Chem Soc 129:7774Stitzel S, Byrne R, Diamond D (2006) J Mater Sci 41:5841Radu A, Scarmagnani S, Byrne R, Slater C, Lau KT, Diamond D (2007) J Phys D Appl Phys 40:7238Thanh NTK, Rosenzweig Z (2002) Anal Chem 74:1624Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL (2003) Anal Chem 75:2377Fryxell GE, Liu J, Mattigod S (1999) Mater Technol 14:188Wang X, Boschetti C, Ruedas-Rama MJ, Tunnacliffe A, Hall EAH (2010) Analyst 135:1585Freeman R, Willner I (2009) Nano Lett 9:322Collinson MM (2010) In: Rurack K, Martínez-Máñez R (eds) The supramolecular chemistry of organic-inorganic hybrid materials. Hoboken, WileyZhu S, Fischer T, Wan W, Descalzo AB, Rurack K (2010) Top Curr Chem (in press

    A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef

    Get PDF
    <p>Abstract</p> <p>Growing consumer interest in grass-fed beef products has raised a number of questions with regard to the perceived differences in nutritional quality between grass-fed and grain-fed cattle. Research spanning three decades suggests that grass-based diets can significantly improve the fatty acid (FA) composition and antioxidant content of beef, albeit with variable impacts on overall palatability. Grass-based diets have been shown to enhance total conjugated linoleic acid (CLA) (C18:2) isomers, <it>trans </it>vaccenic acid (TVA) (C18:1 t11), a precursor to CLA, and omega-3 (n-3) FAs on a g/g fat basis. While the overall concentration of total SFAs is not different between feeding regimens, grass-finished beef tends toward a higher proportion of cholesterol neutral stearic FA (C18:0), and less cholesterol-elevating SFAs such as myristic (C14:0) and palmitic (C16:0) FAs. Several studies suggest that grass-based diets elevate precursors for Vitamin A and E, as well as cancer fighting antioxidants such as glutathione (GT) and superoxide dismutase (SOD) activity as compared to grain-fed contemporaries. Fat conscious consumers will also prefer the overall lower fat content of a grass-fed beef product. However, consumers should be aware that the differences in FA content will also give grass-fed beef a distinct grass flavor and unique cooking qualities that should be considered when making the transition from grain-fed beef. In addition, the fat from grass-finished beef may have a yellowish appearance from the elevated carotenoid content (precursor to Vitamin A). It is also noted that grain-fed beef consumers may achieve similar intakes of both n-3 and CLA through the consumption of higher fat grain-fed portions.</p
    corecore