76 research outputs found

    Behavior of a Metabolic Cycling Population at the Single Cell Level as Visualized by Fluorescent Gene Expression Reporters

    Get PDF
    BACKGROUND: During continuous growth in specific chemostat cultures, budding yeast undergo robust oscillations in oxygen consumption that are accompanied by highly periodic changes in transcript abundance of a majority of genes, in a phenomenon called the Yeast Metabolic Cycle (YMC). This study uses fluorescent reporters of genes specific to different YMC phases in order to visualize this phenomenon and understand the temporal regulation of gene expression at the level of individual cells within the cycling population. METHODOLOGY: Fluorescent gene expression reporters for different phases of the YMC were constructed and stably integrated into the yeast genome. Subsequently, these reporter-expressing yeast were used to visualize YMC dynamics at the individual cell level in cultures grown in a chemostat or in a microfluidics platform under varying glucose concentrations, using fluorescence microscopy and quantitative Western blots. CONCLUSIONS: The behavior of single cells within a metabolic cycling population was visualized using phase-specific fluorescent reporters. The reporters largely recapitulated genome-specified mRNA expression profiles. A significant fraction of the cell population appeared to exhibit basal expression of the reporters, supporting the hypothesis that there are at least two distinct subpopulations of cells within the cycling population. Although approximately half of the cycling population initiated cell division in each permissive window of the YMC, metabolic synchrony of the population was maintained. Using a microfluidics platform we observed that low glucose concentrations appear to be necessary for metabolic cycling. Lastly, we propose that there is a temporal window in the oxidative growth phase of the YMC where the cycling population segregates into at least two subpopulations, one which will enter the cell cycle and one which does not

    Glycine insertion makes yellow fluorescent protein sensitive to hydrostatic pressure

    Get PDF
    Fluorescent protein-based indicators for intracellular environment conditions such as pH and ion concentrations are commonly used to study the status and dynamics of living cells. Despite being an important factor in many biological processes, the development of an indicator for the physicochemical state of water, such as pressure, viscosity and temperature, however, has been neglected. We here found a novel mutation that dramatically enhances the pressure dependency of the yellow fluorescent protein (YFP) by inserting several glycines into it. The crystal structure of the mutant showed that the tyrosine near the chromophore flipped toward the outside of the β-can structure, resulting in the entry of a few water molecules near the chromophore. In response to changes in hydrostatic pressure, a spectrum shift and an intensity change of the fluorescence were observed. By measuring the fluorescence of the YFP mutant, we succeeded in measuring the intracellular pressure change in living cell. This study shows a new strategy of design to engineer fluorescent protein indicators to sense hydrostatic pressure

    Visualization of C. elegans transgenic arrays by GFP

    Get PDF
    BACKGROUND: Targeting the green fluorescent protein (GFP) via the E. coli lac repressor (LacI) to a specific DNA sequence, the lac operator (lacO), allows visualization of chromosomes in yeast and mammalian cells. In principle this method of visualization could be used for genetic mosaic analysis, which requires cell-autonomous markers that can be scored easily and at single cell resolution. The C. elegans lin-3 gene encodes an epidermal growth factor family (EGF) growth factor. lin-3 is expressed in the gonadal anchor cell and acts through LET-23 (transmembrane protein tyrosine kinase and ortholog of EGF receptor) to signal the vulval precursor cells to generate vulval tissue. lin-3 is expressed in the vulval cells later, and recent evidence raises the possibility that lin-3 acts in the vulval cells as a relay signal during vulval induction. It is thus of interest to test the site of action of lin-3 by mosaic analysis. RESULTS: We visualized transgenes in living C. elegans by targeting the green fluorescent protein (GFP) via the E. coli lac repressor (LacI) to a specific 256 sequence repeat of the lac operator (lacO) incorporated into transgenes. We engineered animals to express a nuclear-localized GFP-LacI fusion protein. C. elegans cells having a lacO transgene result in nuclear-localized bright spots (i.e., GFP-LacI bound to lacO). Cells with diffuse nuclear fluorescence correspond to unbound nuclear localized GFP-LacI. We detected chromosomes in living animals by chromosomally integrating the array of the lacO repeat sequence and visualizing the integrated transgene with GFP-LacI. This detection system can be applied to determine polyploidy as well as investigating chromosome segregation. To assess the GFP-LacI•lacO system as a marker for mosaic analysis, we conducted genetic mosaic analysis of the epidermal growth factor lin-3, expressed in the anchor cell. We establish that lin-3 acts in the anchor cell to induce vulva development, demonstrating this method's utility in detecting the presence of a transgene. CONCLUSION: The GFP-LacI•lacO transgene detection system works in C. elegans for visualization of chromosomes and extrachromosomal transgenes. It can be used as a marker for genetic mosaic analysis. The lacO repeat sequence as an extrachromosomal array becomes a valuable technique allowing rapid, accurate determination of spontaneous loss of the array, thereby allowing high-resolution mosaic analysis. The lin-3 gene is required in the anchor cell to induce the epidermal vulval precursors cells to undergo vulval development

    Distinct Roles for Dectin-1 and TLR4 in the Pathogenesis of Aspergillus fumigatus Keratitis

    Get PDF
    Aspergillus species are a major worldwide cause of corneal ulcers, resulting in visual impairment and blindness in immunocompetent individuals. To enhance our understanding of the pathogenesis of Aspergillus keratitis, we developed a murine model in which red fluorescent protein (RFP)-expressing A. fumigatus (Af293.1RFP) conidia are injected into the corneal stroma, and disease progression and fungal survival are tracked over time. Using Mafia mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, we demonstrated that the presence of resident corneal macrophages is essential for production of IL-1β and CXCL1/KC, and for recruitment of neutrophils and mononuclear cells into the corneal stroma. We found that β-glucan was highly expressed on germinating conidia and hyphae in the cornea stroma, and that both Dectin-1 and phospho-Syk were up-regulated in infected corneas. Additionally, we show that infected Dectin-1−/− corneas have impaired IL-1β and CXCL1/KC production, resulting in diminished cellular infiltration and fungal clearance compared with control mice, especially during infection with clinical isolates expressing high β-glucan. In contrast to Dectin 1−/− mice, cellular infiltration into infected TLR2−/−, TLR4−/−, and MD-2−/− mice corneas was unimpaired, indicating no role for these receptors in cell recruitment; however, fungal killing was significantly reduced in TLR4−/− mice, but not TLR2−/− or MD-2−/− mice. We also found that TRIF−/− and TIRAP−/− mice exhibited no fungal-killing defects, but that MyD88−/− and IL-1R1−/− mice were unable to regulate fungal growth. In conclusion, these data are consistent with a model in which β-glucan on A.fumigatus germinating conidia activates Dectin-1 on corneal macrophages to produce IL-1β, and CXCL1, which together with IL-1R1/MyD88-dependent activation, results in recruitment of neutrophils to the corneal stroma and TLR4-dependent fungal killing

    Distinct Roles for Dectin-1 and TLR4 in the Pathogenesis of Aspergillus fumigatus Keratitis

    Get PDF
    Aspergillus species are a major worldwide cause of corneal ulcers, resulting in visual impairment and blindness in immunocompetent individuals. To enhance our understanding of the pathogenesis of Aspergillus keratitis, we developed a murine model in which red fluorescent protein (RFP)-expressing A. fumigatus (Af293.1RFP) conidia are injected into the corneal stroma, and disease progression and fungal survival are tracked over time. Using Mafia mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, we demonstrated that the presence of resident corneal macrophages is essential for production of IL-1β and CXCL1/KC, and for recruitment of neutrophils and mononuclear cells into the corneal stroma. We found that β-glucan was highly expressed on germinating conidia and hyphae in the cornea stroma, and that both Dectin-1 and phospho-Syk were up-regulated in infected corneas. Additionally, we show that infected Dectin-1−/− corneas have impaired IL-1β and CXCL1/KC production, resulting in diminished cellular infiltration and fungal clearance compared with control mice, especially during infection with clinical isolates expressing high β-glucan. In contrast to Dectin 1−/− mice, cellular infiltration into infected TLR2−/−, TLR4−/−, and MD-2−/− mice corneas was unimpaired, indicating no role for these receptors in cell recruitment; however, fungal killing was significantly reduced in TLR4−/− mice, but not TLR2−/− or MD-2−/− mice. We also found that TRIF−/− and TIRAP−/− mice exhibited no fungal-killing defects, but that MyD88−/− and IL-1R1−/− mice were unable to regulate fungal growth. In conclusion, these data are consistent with a model in which β-glucan on A.fumigatus germinating conidia activates Dectin-1 on corneal macrophages to produce IL-1β, and CXCL1, which together with IL-1R1/MyD88-dependent activation, results in recruitment of neutrophils to the corneal stroma and TLR4-dependent fungal killing

    Assessment of a panel of interleukin-8 reporter lung epithelial cell lines to monitor the pro-inflammatory response following zinc oxide nanoparticle exposure under different cell culture conditions

    Get PDF
    Stably transfected lung epithelial reporter cell lines pose an advantageous alternative to replace complex experimental techniques to monitor the pro-inflammatory response following nanoparticle (NP) exposure. Previously, reporter cell lines have been used under submerged culture conditions, however, their potential usefulness in combination with air-liquid interface (ALI) exposures is currently unknown. Therefore, the aim of the present study was to compare a panel of interleukin-8 promoter (pIL8)-reporter cell lines (i.e. green or red fluorescent protein (GFP, RFP), and luciferase (Luc)), originating from A549 lung epithelial type II-like cells cells, following NPs exposure under both submerged and ALI conditions. All cell lines were exposed to zinc oxide (ZnO) NPs at 0.6 and 6.2 μg/cm 2 for 3 and 16 hours under both submerged and ALI conditions. Following physicochemical characterization, the cytotoxic profile of the ZnO-NPs was determined for each exposure scenario. Expression of IL-8 from all cell types was analyzed at the promoter level and compared to the mRNA (qRT-PCR) and protein level (ELISA). In summary, each reporter cell line detected acute pro-inflammatory effects following ZnO exposure under each condition tested. The pIL8-Luc cell line was the most sensitive in terms of reporter signal strength and onset velocity following TNF-α treatment. Both pIL8-GFP and pIL8-RFP also showed a marked signal induction in response to TNF-α, although only after 16 hrs. In terms of ZnO-NP-induced cytotoxicity pIL8-RFP cells were the most affected, whilst the pIL8-Luc were found the least responsive. In conclusion, the use of fluorescence-based reporter cell lines can provide a useful tool in screening the pro-inflammatory response following NP exposure in both submerged and ALI cell cultures. The online version of this article (doi:10.1186/s12989-015-0104-6) contains supplementary material, which is available to authorized users

    Single-molecule spectroscopy of fluorescent proteins

    Full text link

    Dephosphorylation of myo-inositol 1,4,5-trisphosphate and myo-inositol 1,3,4-trisphosphate

    No full text
    We have augmented our previous studies [Storey, Shears, Kirk & Michell (1984) Nature (London) 312, 374-376] on the subcellular location and properties of Ins(1,4,5)P3 (inositol 1,4,5-trisphosphate) phosphatases in rat liver and human erythrocytes. We also investigate Ins(1,3,4)P3 (inositol 1,3,4-trisphosphate) metabolism by rat liver. Membrane-bound and cytosolic Ins(1,4,5)P3 phosphatases both attack the 5-phosphate. The membrane-bound enzyme is located on the inner face of the plasma membrane, and there is little or no activity associated with Golgi apparatus. Cytosolic Ins(1,4,5)P3 5-phosphatase (Mr 77,000) was separated by gel filtration from Ins(1,4)P2 (inositol 1,4-bisphosphate) and inositol 1-phosphate phosphatases (Mr 54,000). Ins(1,4,5)P3 5-phosphatase activity in hepatocytes was unaffected by treatment of the cells with insulin, vasopressin, glucagon or dibutyryl cyclic AMP. Ins(1,4,5)P3 5-phosphatase activity in cell homogenates was unaffected by changes in [Ca2+] from 0.1 to 2 microM. After centrifugation of a liver homogenate at 100,000 g, Ins(1,3,4)P3 phosphatase activity was largely confined to the supernatant. The sum of the activities in the supernatant and the pellet exceeded that in the original homogenate. When these fractions were recombined, Ins(1,3,4)P3 phosphatase activity was restored to that observed in unfractionated homogenate. Ins(1,3,4)P3 was produced from Ins(1,3,4,5)P4 (inositol 1,3,4,5-tetrakisphosphate) and was metabolized to a novel InsP2 that was the 3,4-isomer. Ins(1,3,4)P3 phosphatase activity was not changed by 50 mM-Li+ or 0.07 mM-Ins(1,4)P2 alone, but when added together these agents inhibited Ins(1,3,4)P3 metabolism. In Li+-treated and vasopressin-stimulated hepatocytes, Ins(1,4)P2 may reach concentrations sufficient to inhibit Ins(1,3,4)P3 metabolism, with little effect on Ins(1,4,5)P3 hydrolysis
    corecore