19 research outputs found

    Dopaminergic Polymorphisms Associated with Time-on-Task Declines and Fatigue in the Psychomotor Vigilance Test

    Get PDF
    Prolonged demands on the attention system can cause a decay in performance over time known as the time-on-task effect. The inter-subject differences in the rate of this decline are large, and recent efforts have been made to understand the biological bases of these individual differences. In this study, we investigate the genetic correlates of the time-on-task effect, as well as its accompanying changes in subjective fatigue and mood. N = 332 subjects performed a 20-minute test of sustained attention (the Psychomotor Vigilance Test) and rated their subjective states before and after the test. We observed substantial time-on-task effects on average, and large inter-individual differences in the rate of these declines. The 10-repeat allele of the variable number of tandem repeats marker (VNTR) in the dopamine transporter gene and the Met allele of the catechol-o-methyl transferase (COMT) Val158Met polymorphism were associated with greater vulnerability to time-on-task. Separately, the exon III DRD4 48 bp VNTR of the dopamine receptor gene DRD4 was associated with subjective decreases in energy. No polymorphisms were associated with task-induced changes in mood. We posit that the dopamine transporter and COMT genes exert their effects by increasing dopaminergic tone, which may induce long-term changes in the prefrontal cortex, an important mediator of sustained attention. Thus, these alleles may affect performance particularly when sustained dopamine release is necessary

    Striatal Dopamine Transmission Is Subtly Modified in Human A53Tα-Synuclein Overexpressing Mice

    Get PDF
    Mutations in, or elevated dosage of, SNCA, the gene for α-synuclein (α-syn), cause familial Parkinson's disease (PD). Mouse lines overexpressing the mutant human A53Tα-syn may represent a model of early PD. They display progressive motor deficits, abnormal cellular accumulation of α-syn, and deficits in dopamine-dependent corticostriatal plasticity, which, in the absence of overt nigrostriatal degeneration, suggest there are age-related deficits in striatal dopamine (DA) signalling. In addition A53Tα-syn overexpression in cultured rodent neurons has been reported to inhibit transmitter release. Therefore here we have characterized for the first time DA release in the striatum of mice overexpressing human A53Tα-syn, and explored whether A53Tα-syn overexpression causes deficits in the release of DA. We used fast-scan cyclic voltammetry to detect DA release at carbon-fibre microelectrodes in acute striatal slices from two different lines of A53Tα-syn-overexpressing mice, at up to 24 months. In A53Tα-syn overexpressors, mean DA release evoked by a single stimulus pulse was not different from wild-types, in either dorsal striatum or nucleus accumbens. However the frequency responsiveness of DA release was slightly modified in A53Tα-syn overexpressors, and in particular showed slight deficiency when the confounding effects of striatal ACh acting at presynaptic nicotinic receptors (nAChRs) were antagonized. The re-release of DA was unmodified after single-pulse stimuli, but after prolonged stimulation trains, A53Tα-syn overexpressors showed enhanced recovery of DA release at old age, in keeping with elevated striatal DA content. In summary, A53Tα-syn overexpression in mice causes subtle changes in the regulation of DA release in the striatum. While modest, these modifications may indicate or contribute to striatal dysfunction

    Post translational changes to α-synuclein control iron and dopamine trafficking : a concept for neuron vulnerability in Parkinson's disease

    Get PDF
    Parkinson's disease is a multifactorial neurodegenerative disorder, the aetiology of which remains elusive. The primary clinical feature of progressively impaired motor control is caused by a loss of midbrain substantia nigra dopamine neurons that have a high α-synuclein (α-syn) and iron content. α-Syn is a neuronal protein that is highly modified post-translationally and central to the Lewy body neuropathology of the disease. This review provides an overview of findings on the role post translational modifications to α-syn have in membrane binding and intracellular vesicle trafficking. Furthermore, we propose a concept in which acetylation and phosphorylation of α-syn modulate endocytic import of iron and vesicle transport of dopamine during normal physiology. Disregulated phosphorylation and oxidation of α-syn mediate iron and dopamine dependent oxidative stress through impaired cellular location and increase propensity for α-syn aggregation. The proposition highlights a connection between α-syn, iron and dopamine, three pathological components associated with disease progression in sporadic Parkinson's disease

    Alpha-synuclein: from secretion to dysfunction and death

    No full text
    The aggregation, deposition, and dysfunction of alpha-synuclein (aSyn) are common events in neurodegenerative disorders known as synucleinopathies. These include Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. A growing body of knowledge on the biology of aSyn is emerging and enabling novel hypotheses to be tested. In particular, the hypothesis that aSyn is secreted from neurons, thus contributing to the spreading of pathology not only in the brain but also in other organs, is gaining momentum. Nevertheless, the precise mechanism(s) of secretion, as well as the consequences of extracellular aSyn species for neighboring cells are still unclear. Here, we review the current literature and integrate existing data in order to propose possible mechanisms of secretion, cell dysfunction, and death. Ultimately, the complete understanding of these processes might open novel avenues for the development of new therapeutic strategies

    Dopamine and Working Memory: Genetic Variation, Stress and Implications for Mental Health

    No full text
    At the molecular level, the neurotransmitter dopamine (DA) is a key regulatory component of executive function in the prefrontal cortex (PFC) and dysfunction in dopaminergic (DAergic) circuitry has been shown to result in impaired working memory (WM). Research has identified multiple common genetic variants suggested to impact on the DA system functionally and also behaviourally to alter WM task performance. In addition, environmental stressors impact on DAergic tone, and this may be one mechanism by which stressors confer vulnerability to the development of neuropsychiatric conditions. This chapter aims to evaluate the impact of key DAergic gene variants suggested to impact on both synaptic DA levels (COMT, DAT1, DBH, MAOA) and DA receptor function (ANKK1, DRD2, DRD4) in terms of their influence on visuospatial WM. The role of stressors and interaction with the genetic background is discussed in addition to discussion around some of the implications for precision psychiatry. This and future work in this area aim to disentangle the neural mechanisms underlying susceptibility to stress and their impact and relationship with cognitive processes known to influence mental health vulnerability

    Sex Differences in COMT Polymorphism Effects on Prefrontal Inhibitory Control in Adolescence

    No full text
    Catecholamine-0-methyl-transferase (COMT) gene variation effects on prefrontal blood oxygenation-level-dependent (BOLD) activation are robust; however, despite observations that COMT is estrogenically catabolized, sex differences in its prefrontal repercussions remain unclear. Here, in a large sample of healthy adolescents stratified by sex and Val 158 Met genotype (n=1133), we examine BOLD responses during performance of the stop-signal task in right-hemispheric prefrontal regions fundamental to inhibitory control. A significant sex-by-genotype interaction was observed in pre-SMA during successful-inhibition trials and in both pre-SMA and inferior frontal cortex during failed-inhibition trials with Val homozygotes displaying elevated activation compared with other genotypes in males but not in females. BOLD activation in the same regions significantly mediated the relationship between COMT genotype and inhibitory proficiency as indexed by stop-signal reaction time in males alone. These sexually dimorphic effects of COMT on inhibitory brain activation have important implications for our understanding of the contrasting patterns of prefrontally governed psychopathology observed in males and females

    Alpha Synuclein in Parkinson’s Disease

    No full text
    corecore