101 research outputs found
Is Our Universe Natural?
It goes without saying that we are stuck with the universe we have.
Nevertheless, we would like to go beyond simply describing our observed
universe, and try to understand why it is that way rather than some other way.
Physicists and cosmologists have been exploring increasingly ambitious ideas
that attempt to explain why certain features of our universe aren't as
surprising as they might first appear.Comment: Invited review for Nature, 11 page
B-L Cosmic Strings in Heterotic Standard Models
E_{8} X E_{8} heterotic string and M-theory, when compactified on smooth
Calabi-Yau manifolds with SU(4) vector bundles, can give rise to softly broken
N=1 supersymmetric theories with the exact matter spectrum of the MSSM,
including three right-handed neutrinos and one Higgs-Higgs conjugate pair of
supermultiplets. These vacua have the SU(3)_{C} X SU(2)_{L} X U(1)_{Y} gauge
group of the standard model augmented by an additional gauged U(1)_{B-L}. Their
minimal content requires that the B-L symmetry be spontaneously broken by a
vacuum expectation value of at least one right-handed sneutrino. The soft
supersymmetry breaking operators can induce radiative breaking of the B-L gauge
symmetry with an acceptable B-L/electroweak hierarchy. In this paper, it is
shown that U(1)_{B-L} cosmic strings occur in this context, potentially with
both bosonic and fermionic superconductivity. We present a numerical analysis
that demonstrates that boson condensates can, in principle, form for theories
of this type. However, the weak Yukawa and gauge couplings of the right-handed
sneutrino suggests that bosonic superconductivity will not occur in the
simplest vacua in this context. The electroweak phase transition also disallows
fermion superconductivity, although substantial bound state fermion currents
can exist.Comment: 41 pages, 5 figure
The Cosmic Microwave Background and Particle Physics
In forthcoming years, connections between cosmology and particle physics will
be made increasingly important with the advent of a new generation of cosmic
microwave background (CMB) experiments. Here, we review a number of these
links. Our primary focus is on new CMB tests of inflation. We explain how the
inflationary predictions for the geometry of the Universe and primordial
density perturbations will be tested by CMB temperature fluctuations, and how
the gravitational waves predicted by inflation can be pursued with the CMB
polarization. The CMB signatures of topological defects and primordial magnetic
fields from cosmological phase transitions are also discussed. Furthermore, we
review current and future CMB constraints on various types of dark matter (e.g.
massive neutrinos, weakly interacting massive particles, axions, vacuum
energy), decaying particles, the baryon asymmetry of the Universe,
ultra-high-energy cosmic rays, exotic cosmological topologies, and other new
physics.Comment: 43 pages. To appear in Annual Reviews of Nuclear and Particle Scienc
Cosmological evolution of the Higgs boson's vacuum expectation value
We point out that the expansion of the universe leads to a cosmological time evolution of the vacuum expectation of the Higgs boson. Within the standard model of particle physics, the cosmological time evolution of the vacuum expectation of the Higgs leads to a cosmological time evolution of the masses of the fermions and of the electroweak gauge bosons while the scale of Quantum Chromodynamics (QCD) remains constant. Precise measurements of the cosmological time evolution of u=me/mp, where me and mp are respectively the electron and proton mass (which is essentially determined by the QCD scale), therefore provide a test of the standard models of particle physics and of cosmology. This ratio can be measured using modern atomic clocks
Dynamical Mean-Field Theory within an Augmented Plane-Wave Framework: Assessing Electronic Correlations in the Iron Pnictide LaFeAsO
We present an approach that combines the local density approximation (LDA)
and the dynamical mean-field theory (DMFT) in the framework of the
full-potential linear augmented plane waves (FLAPW) method. Wannier-like
functions for the correlated shell are constructed by projecting local orbitals
onto a set of Bloch eigenstates located within a certain energy window. The
screened Coulomb interaction and Hund's coupling are calculated from a
first-principle constrained RPA scheme. We apply this LDA+DMFT implementation,
in conjunction with continuous-time quantum Monte-Carlo, to study the
electronic correlations in LaFeAsO. Our findings support the physical picture
of a metal with intermediate correlations. The average value of the mass
renormalization of the Fe 3d bands is about 1.6, in reasonable agreement with
the picture inferred from photoemission experiments. The discrepancies between
different LDA+DMFT calculations (all technically correct) which have been
reported in the literature are shown to have two causes: i) the specific value
of the interaction parameters used in these calculations and ii) the degree of
localization of the Wannier orbitals chosen to represent the Fe 3d states, to
which many-body terms are applied. The latter is a fundamental issue in the
application of many-body calculations, such as DMFT, in a realistic setting. We
provide strong evidence that the DMFT approximation is more accurate and more
straightforward to implement when well-localized orbitals are constructed from
a large energy window encompassing Fe-3d, As-4p and O-2p, and point out several
difficulties associated with the use of extended Wannier functions associated
with the low-energy iron bands. Some of these issues have important physical
consequences, regarding in particular the sensitivity to the Hund's coupling.Comment: 16 pages, 9 figures, published versio
On domain walls in a Ginzburg-Landau non-linear S^2-sigma model
The domain wall solutions of a Ginzburg-Landau non-linear -sigma hybrid
model are unveiled. There are three types of basic topological walls and two
types of degenerate families of composite - one topological, the other
non-topological- walls. The domain wall solutions are identified as the finite
action trajectories (in infinite time) of a related mechanical system that is
Hamilton-Jacobi separable in sphero-conical coordinates. The physical and
mathematical features of these domain walls are thoroughly discussed.Comment: 26 pages, 18 figure
Non-minimal coupling of the Higgs boson to curvature in an inflationary universe
In the absence of new physics around 10^10 GeV, the electroweak vacuum is at best metastable. This represents a major challenge for high scale in ationary models as, during the early rapid expansion of the universe, it seems difficult to understand how the Higgs vacuum would not decay to the true lower vacuum of the theory with catas- trophic consequences if inflation took place at a scale above 10^10 GeV. In this paper we show that the non-minimal coupling of the Higgs boson to curvature could solve this problem by generating a direct coupling of the Higgs boson to the inflationary potential thereby stabilizing the electroweak vacuum. For specific values of the Higgs field initial condition and of its non-minimal coupling, inflation can drive the Higgs field to the electroweak vacuum quickly during inflation
The impact of Stieltjes' work on continued fractions and orthogonal polynomials
Stieltjes' work on continued fractions and the orthogonal polynomials related
to continued fraction expansions is summarized and an attempt is made to
describe the influence of Stieltjes' ideas and work in research done after his
death, with an emphasis on the theory of orthogonal polynomials
- …