170 research outputs found

    Enhanced Characterization of the Smell of Death by Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry (GCxGC-TOFMS)

    Get PDF
    Soon after death, the decay process of mammalian soft tissues begins and leads to the release of cadaveric volatile compounds in the surrounding environment. The study of postmortem decomposition products is an emerging field of study in forensic science. However, a better knowledge of the smell of death and its volatile constituents may have many applications in forensic sciences. Domestic pigs are the most widely used human body analogues in forensic experiments, mainly due to ethical restrictions. Indeed, decomposition trials on human corpses are restricted in many countries worldwide. This article reports on the use of comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GCxGC-TOFMS) for thanatochemistry applications. A total of 832 VOCs released by a decaying pig carcass in terrestrial ecosystem, i.e. a forest biotope, were identified by GCxGC-TOFMS. These postmortem compounds belong to many kinds of chemical class, mainly oxygen compounds (alcohols, acids, ketones, aldehydes, esters), sulfur and nitrogen compounds, aromatic compounds such as phenolic molecules and hydrocarbons. The use of GCxGC-TOFMS in study of postmortem volatile compounds instead of conventional GC-MS was successful

    Carrion Beetles Visiting Pig Carcasses during Early Spring in Urban, Forest and Agricultural Biotopes of Western Europe

    Get PDF
    Carrion beetles are important in terrestrial ecosystems, consuming dead mammals and promoting the recycling of organic matter into ecosystems. Most forensic studies are focused on succession of Diptera while neglecting Coleoptera. So far, little information is available on carrion beetles postmortem colonization and decomposition process in temperate biogeoclimatic countries. These beetles are however part of the entomofaunal colonization of a dead body. Forensic entomologists need databases concerning the distribution, ecology and phenology of necrophagous insects, including silphids. Forensic entomology uses pig carcasses to surrogate human decomposition and to investigate entomofaunal succession. However, few studies have been conducted in Europe on large carcasses. The work reported here monitored the presence of the carrion beetles (Coleoptera: Silphidae) on decaying pig carcasses in three selected biotopes (forest, crop field, urban site) at the beginning of spring. Seven species of Silphidae were recorded: Nicrophorus humator (Gleditsch), Nicrophorus vespillo (L.), Nicrophorus vespilloides (Herbst), Necrodes littoralis L., Oiceoptoma thoracica L., Thanatophilus sinuatus (Fabricius), Thanatophilus rugosus (L.). All of these species were caught in the forest biotope, and all but O. thoracica were caught in the agricultural biotope. No silphids were caught in the urban site

    TMEM106B a Novel Risk Factor for Frontotemporal Lobar Degeneration

    Get PDF
    Recently, the first genome-wide association (GWA) study in frontotemporal lobar degeneration (FTLD) identified common genetic variability at the TMEM106B gene on chromosome 7p21.3 as a potential important risk-modifying factor for FTLD with pathologic inclusions of TAR DNA-binding protein (FTLD-TDP), the most common pathological subtype in FTLD. To gather additional evidence for the implication of TMEM106B in FTLD risk, multiple replication studies in geographically distinct populations were set up. In this review, we revise all recent replication and follow-up studies of the FTLD-TDP GWA study and summarize the growing body of evidence that establish TMEM106B as a bona fide risk factor for FTLD. With the TMEM106B gene, a new player has been identified in the pathogenic cascade of FTLD which could hold important implications for the future development of disease-modifying therapies

    How taphonomic alteration affects the detection and imaging of striations in stab wounds

    Get PDF
    Stabbing with a kitchen knife is a common methodof homicide in Europe. Serrated knives may leave tool mark-ings (striations) in tissues. Documentation of striations is nec-essary for their use as forensic evidence. Traditional methods(physical casting and photography) have significant limita-tions, and micro-computed tomography (micro-CT) has beentrialled in cartilage toBvirtually cast^wounds. Previous re-search has shown the proportion of striations in cartilage fallsfollowing decomposition. This project has investigated theeffects of taphonomic alteration and documentation methodsof striations in porcine skin. Fresh, decomposed, mummified,burnt and waterlogged stab wounds in a porcine analoguewere excised and imaged using photography, stereo-opticalmicroscopy and micro-CT. The proportion of striations ineach taphonomic group was determined from the images byindependent analysts. Striations were observed more frequent-ly in serrated blade wounds, although they were also identifiedin non-serrated blade wounds. The proportion of woundsshowing striations declined following decomposition. An in-versely proportional linear correlation between advancing de-composition and proportion of striations existed. Dehydration(mummification and burning) rendered serrated and non-serrated blade wounds indistinguishable. Water compositionaffected the preservation of striations. Identification ofstriations gradually declined after decomposition in tap water,but persisted to a point when left in brackish water. All threetechniques imaged striations; however, the optimum tech-nique was stereo-optical microscopy due to practical advan-tages and specific limitations affecting photography and mi-cro-CT. This study demonstrates the effects of taphonomicalteration on striations and suggests stereo-optical microscopyis the optimum method for their documentation

    Discretization Provides a Conceptually Simple Tool to Build Expression Networks

    Get PDF
    Biomarker identification, using network methods, depends on finding regular co-expression patterns; the overall connectivity is of greater importance than any single relationship. A second requirement is a simple algorithm for ranking patients on how relevant a gene-set is. For both of these requirements discretized data helps to first identify gene cliques, and then to stratify patients

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    High Resolution Spectral Domain Optical Coherence Tomography (SD-OCT) in Multiple Sclerosis: The First Follow Up Study over Two Years

    Get PDF
    “Non-invasive, faster and less expensive than MRI” and “the eye is a window to the brain” are recent slogans promoting optical coherence tomography (OCT) as a new surrogate marker in multiple sclerosis (MS). Indeed, OCT allows for the first time a non-invasive visualization of axons of the central nervous system (CNS). Reduction of retina nerve fibre layer (RNFL) thickness was suggested to correlate with disease activity and duration. However, several issues are unclear: Do a few million axons, which build up both optic nerves, really resemble billions of CNS neurons? Does global CNS damage really result in global RNFL reduction? And if so, does global RNFL reduction really exist in all MS patients, and follow a slowly but steadily ongoing pattern? How can these (hypothesized) subtle global RNFL changes be reliably measured and separated from the rather gross RNFL changes caused by optic neuritis? Before generally being accepted, this interpretation needs further critical and objective validation.We prospectively studied 37 MS patients with relapsing remitting (n = 27) and secondary progressive (n = 10) course on two occasions with a median interval of 22.4±0.5 months [range 19–27]. We used the high resolution spectral domain (SD-)OCT with the Spectralis 3.5 mm circle scan protocol with locked reference images and eye tracking mode. Patients with an attack of optic neuritis within 12 months prior to the onset of the study were excluded.Although the disease was highly active over the observation period in more than half of the included relapsing remitting MS patients (19 patients/32 relapses) and the initial RNFL pattern showed a broad range, from normal to markedly reduced thickness, no significant changes between baseline and follow-up examinations could be detected.These results show that caution is required when using OCT for monitoring disease activity and global axonal injury in MS

    Post-mortem volatiles of vertebrate tissue

    Get PDF
    Volatile emission during vertebrate decay is a complex process that is understood incompletely. It depends on many factors. The main factor is the metabolism of the microbial species present inside and on the vertebrate. In this review, we combine the results from studies on volatile organic compounds (VOCs) detected during this decay process and those on the biochemical formation of VOCs in order to improve our understanding of the decay process. Micro-organisms are the main producers of VOCs, which are by- or end-products of microbial metabolism. Many microbes are already present inside and on a vertebrate, and these can initiate microbial decay. In addition, micro-organisms from the environment colonize the cadaver. The composition of microbial communities is complex, and communities of different species interact with each other in succession. In comparison to the complexity of the decay process, the resulting volatile pattern does show some consistency. Therefore, the possibility of an existence of a time-dependent core volatile pattern, which could be used for applications in areas such as forensics or food science, is discussed. Possible microbial interactions that might alter the process of decay are highlighted
    corecore