19 research outputs found

    A criterion for the fragmentation of bubbly magma based on brittle failure theory

    Full text link
    The fragmentation of bubbly magma is a defining point in a volcanic eruption-before fragmentation the magma flows relatively slowly, during fragmentation the bubbles break up to release compressed gas and, afterwards, the eruption becomes a violent gas flow carrying suspended magma particles. Seemingly benign lava flows or domes can suddenly fragment into deadly pyroclastic flows(1-3). Several criteria have been proposed to define the point of magma fragmentation or foam stability(4-7). The criterion of Papale(7) is based on melt relaxation theory and equates magma strain rate with the rate of increase of flow velocity with distance. It ignores, however, the role of bubble pressure in causing fragmentation. Two empirical approaches(4,5) consider the role of high bubble pressure in causing fragmentation but do not address the underlying physics of magma fragmentation. Here I develop a fragmentation criterion for bubbly magma based on brittle failure theory and apply it to the fragmentation of lava domes and flows. On the basis of this theory, a bubbly magma will fragment when the tensile stress at the inner walls of bubbles exceeds the tensile strength of the magma. The fragmentation conditions depend strongly on initial water content, with calculated vesicularity and final water levels coinciding reasonably well with those in observed pumices. This suggests that the proposed criterion captures the essence of the fragmentation process in bubbly magma.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62724/1/402648a0.pd

    Using dissolved H<sub>2</sub>O in rhyolitic glasses to estimate palaeo-ice thickness during a subglacial eruption at BlĂĄhnĂșkur(Torfajökull, Iceland)

    Get PDF
    The last decade has seen the refinement of a technique for reconstructing palaeo-ice thicknesses based on using the retained H2O and CO2 content in glassy eruptive deposits to infer quenching pressures and therefore ice thicknesses. The method is here applied to BlĂĄhnĂșkur, a subglacially erupted rhyolitic edifice in Iceland. A decrease in water content from ~0.7 wt.% at the base to ~0.3 wt.% at the top of the edifice suggests that the ice was 400 m thick at the time of the eruption. As BlĂĄhnĂșkur rises 350 m above the surrounding terrain, this implies that the eruption occurred entirely within ice, which corroborates evidence obtained from earlier lithofacies studies. This paper presents the largest data set (40 samples) so far obtained for the retained volatile contents of deposits from a subglacial eruption. An important consequence is that it enables subtle but significant variations in water content to become evident. In particular, there are anomalous samples which are either water-rich (up to 1 wt.%) or water-poor (~0.2 wt.%), with the former being interpreted as forming intrusively within hyaloclastite and the latter representing batches of magma that were volatile-poor prior to eruption. The large data set also provides further insights into the strengths and weaknesses of using volatiles to infer palaeo-ice thicknesses and highlights many of the uncertainties involved. By using examples from BlĂĄhnĂșkur, the quantitative use of this technique is evaluated. However, the relative pressure conditions which have shed light on BlĂĄhnĂșkur’s eruption mechanisms and syn-eruptive glacier response show that, despite uncertainties in absolute values, the volatile approach can provide useful insight into the mechanisms of subglacial rhyolitic eruptions, which have never been observed

    Confocal microscopy 3D imaging of diesel particulate matter

    Get PDF
    To date, diesel particulate matter (DPM) has been described as aggregates of spherule particles with a smooth appearing surface. We have used a new colour confocal microscope imaging method to study the 3D shape of diesel particulate matter (DPM); we observed that the particles can have sharp jagged appearing edges and consistent with these findings, 2D light microscopy demonstrated that DPM adheres to human lung epithelial cells. Importantly, the slide preparation and confocal microscopy method applied avoids possible alteration to the particles' surfaces and enables colour 3D visualisation of the particles. From twenty-one PM particles, the mean (standard deviation) major axis length was 5.6 (2.25) ÎŒm with corresponding values for the minor axis length of 3.8 (1.25) ÎŒm. These new findings may help explain why air pollution particulate matter (PM) has the ability to infiltrate human airway cells, potentially leading to respiratory tract, cardiovascular and neurological disease

    Thermal vesiculation during volcanic eruptions

    Get PDF
    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma1. The development of vesicularity also greatly reduces the ‘strength’ of magma2, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock3. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization4 as well as viscous5,6 and frictional7 heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive–explosive transition in volcanic eruptions
    corecore