318 research outputs found

    Analysis of the functional repertoire of a mutant form of survivin, K129E, which has been linked to lung cancer

    Get PDF
    Background Survivin is a protein that is normally present only in G2 and M-phases in somatic cells, however, in cancer cells, it is expressed throughout the cell cycle. A prosurvival factor, survivin is both an inhibitor of apoptosis and an essential mitotic protein, thus it has attracted much attention as a target for new oncotherapies. Despite its prevalence in cancer, reports of survivin mutations have mostly been restricted to loci within its promoter, which increase the abundance of the protein. To date the only published mutation within the coding sequence is an adenine > guanine substitution in exon 4. This polymorphism, which was found in a cohort of Korean lung cancer patients, causes a lysine > glutamic acid mutation (K129E) in the protein. However, whether it plays a causative role in cancer has not been addressed. Methods Using site directed mutagenesis we recapitulate K129E expression in cultured human cells and assess its anti-apoptotic and mitotic activities. Results K129E retains its anti-apoptotic activity, but causes errors in mitosis and cytokinesis, which may be linked to its reduced affinity for borealin. Conclusion K129E expression can induce genomic instability by introducing mitotic aberrations, thus it may play a causative role in cancer

    Relationship between inpatient satisfaction and nurse absenteeism: an exploratory study using WHO-PATH performance indicators in France

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Indicators describing results of care are widely explored in term of patient satisfaction (PS). Among factors explaining PS, human resources indicators have been studied in terms of burnout or job satisfaction among healthcare professionals. No research work has set out to explore the effect of absenteeism on PS scores. The objective of this study was to explore interaction between rate of absenteeism among nurses and PS results.</p> <p>Methods</p> <p>France has taken part in a project named PATH (Performance Assessment Tool for Hospitals) of the World Health Organization, aiming to develop a tool for the assessment of hospital performance. In the first semester 2008, 25 volunteering short-stay hospitals (teaching, general and private) provide complete data on nurse short-absenteeism (periods of up to 7 consecutive days of sick leave) and on PS (a cross-sectional postal survey using a standardized validated French-language scale EQS-H exploring "quality of medical information" (MI) and "relationships with staff and daily routine" (RS)). A multi-level model was used to take into account of the hierarchical nature of the data.</p> <p>Results</p> <p>Two thousand and sixty-five patients responded to the satisfaction questionnaire (participation rate: 40.9%). The mean age of respondents was 58 yrs (± 19), 41% were men. The mean duration of hospitalisation was 7.5 days (± 11.1). The mean absenteeism rate for nurses was 0.24% (± 0.14).</p> <p>All the PS scores were significantly and negatively correlated with rate of short-absenteeism among nurses (MI score: <it>ρ </it>= -0.55, <it>p </it>< 0.01), RS score <it>ρ </it>= -0.47, <it>p </it>= 0.02). The mixed model found a significant relationship between rate of absenteeism among nurses and PS scores (MI: <it>p </it>= 0.027; RS: <it>p </it>= 0.017).</p> <p>Conclusion</p> <p>Results obtained in this study show that short-term absenteeism among nurses seems to be significantly and negatively correlated with PS. Our findings are an invitation to deepen our understanding of the impact of human resources on PS and to develop more specific projects.</p

    Three-dimensional structure of a viral genome-delivery portal vertex.

    Get PDF
    DNA viruses such as bacteriophages and herpesviruses deliver their genome into and out of the capsid through large proteinaceous assemblies, known as portal proteins. Here, we report two snapshots of the dodecameric portal protein of bacteriophage P22. The 3.25-Å-resolution structure of the portal-protein core bound to 12 copies of gene product 4 (gp4) reveals a ~1.1-MDa assembly formed by 24 proteins. Unexpectedly, a lower-resolution structure of the full-length portal protein unveils the unique topology of the C-terminal domain, which forms a ~200-Å-long α-helical barrel. This domain inserts deeply into the virion and is highly conserved in the Podoviridae family. We propose that the barrel domain facilitates genome spooling onto the interior surface of the capsid during genome packaging and, in analogy to a rifle barrel, increases the accuracy of genome ejection into the host cell

    Ankyrin-mediated self-protection during cell invasion by the bacterial predator Bdellovibrio bacteriovorus

    Get PDF
    Predatory Bdellovibrio bacteriovorus are natural antimicrobial organisms, killing other bacteria by whole-cell invasion. Self-protection against prey-metabolizing enzymes is important for the evolution of predation. Initial prey entry involves the predator’s peptidoglycan DD-endopeptidases, which decrosslink cell walls and prevent wasteful entry by a second predator. Here we identify and characterize a self-protection protein from B. bacteriovorus, Bd3460, which displays an ankyrin-based fold common to intracellular pathogens of eukaryotes. Co-crystal structures reveal Bd3460 complexation of dual targets, binding a conserved epitope of each of the Bd3459 and Bd0816 endopeptidases. Complexation inhibits endopeptidase activity and cell wall decrosslinking in vitro. Self-protection is vital — DBd3460 Bdellovibrio deleteriously decrosslink self-peptidoglycan upon invasion, adopt a round morpholog, and lose predatory capacity and cellular integrity. Our analysis provides the first mechanistic examination of self-protection in Bdellovibrio, documents protection-multiplicity for products of two different genomic loci, and reveals an important evolutionary adaptation to an invasive predatory bacterial lifestyle

    A Randomized Trial Evaluating Prosaptide™ for HIV-Associated Sensory Neuropathies: Use of an Electronic Diary to Record Neuropathic Pain

    Get PDF
    Objectives: To examine the efficacy and safety of Prosaptide™ (PRO) for the treatment of painful HIV-associated sensory neuropathies (HIV-SN). Design: A randomized, double-blind, placebo-controlled, multicenter study in participants with sensory neuropathy. Pain modulating therapy was discontinued prior to baseline. Participants were stratified by sural sensory nerve action potential (SNAP) amplitude. Participants were trained to use an electronic diary (ED) to record pain. Setting: Peripheral neuropathies are common complications of HIV infection. The pathogenesis is unknown and currently treatments are restricted to symptomatic measures. We examined PRO against placebo (PBO) for treatment of painful HIV-SN and performed a post-hoc evaluation of an electronic diary (ED) to record HIV-associated neuropathic pain. Participants: Eligible participants included adults with neurologist-confirmed painful HIV-SN.Interventions 2, 4, 8, or 16 mg/d PRO or PBO administered via subcutaneous (SC) injection for six weeks. Neurotoxic antiretroviral drug usage was held constant.Outcome Measures Changes from baseline in the weekly average of evaluable daily random prompts measuring pain using the Gracely pain scale and adverse events. Results: 237 participants were randomized. The study was stopped after a planned futility analysis. There were no between-group differences in the frequency of adverse events or laboratory toxicities. The 6-week mean (sd) Gracely pain scale changes were −0.12 (0.23), −0.24 (0.35), −0.15 (0.32), −0.18 (0.34), and −0.18 (0.32) for the 2, 4, 8, 16 mg, and PBO arms respectively. A similar variability of pain changes recorded using the ED were noted compared to previous trials that used paper collection methods.Conclusions 6-week treatment with PRO was safe but not effective at reducing HIV-associated neuropathic pain. Use of an ED to record neuropathic pain is novel in HIV-SN, resulted in reasonable compliance in recording pain data, but did not decrease the variability of pain scores compared to historical paper collection methods. Trial Registration: Current Controlled Trials NCT0028637

    Structural Basis for Variant-Specific Neuroligin-Binding by α-Neurexin

    Get PDF
    Neurexins (Nrxs) are presynaptic membrane proteins with a single membrane-spanning domain that mediate asymmetric trans-synaptic cell adhesion by binding to their postsynaptic receptor neuroligins. α-Nrx has a large extracellular region comprised of multiple copies of laminin, neurexin, sex-hormone-binding globulin (LNS) domains and epidermal growth factor (EGF) modules, while that of β-Nrx has but a single LNS domain. It has long been known that the larger α-Nrx and the shorter β-Nrx show distinct binding behaviors toward different isoforms/variants of neuroligins, although the underlying mechanism has yet to be elucidated. Here, we describe the crystal structure of a fragment corresponding to the C-terminal one-third of the Nrx1α ectodomain, consisting of LNS5-EGF3-LNS6. The 2.3 Å-resolution structure revealed the presence of a domain configuration that was rigidified by inter-domain contacts, as opposed to the more common flexible “beads-on-a-string” arrangement. Although the neuroligin-binding site on the LNS6 domain was completely exposed, the location of the α-Nrx specific LNS5-EGF3 segment proved incompatible with the loop segment inserted in the B+ neuroligin variant, which explains the variant-specific neuroligin recognition capability observed in α-Nrx. This, combined with a low-resolution molecular envelope obtained by a single particle reconstruction performed on negatively stained full-length Nrx1α sample, allowed us to derive a structural model of the α-Nrx ectodomain. This model will help us understand not only how the large α-Nrx ectodomain is accommodated in the synaptic cleft, but also how the trans-synaptic adhesion mediated by α- and β-Nrxs could differentially affect synaptic structure and function

    An internal ribosome entry site in the 5′ untranslated region of epidermal growth factor receptor allows hypoxic expression

    Get PDF
    The expression of epidermal growth factor receptor (EGFR/ERBB1/HER1) is implicated in the progress of numerous cancers, a feature that has been exploited in the development of EGFR antibodies and EGFR tyrosine kinase inhibitors as anti-cancer drugs. However, EGFR also has important normal cellular functions, leading to serious side effects when EGFR is inhibited. One damaging characteristic of many oncogenes is the ability to be expressed in the hypoxic conditions associated with the tumour interior. It has previously been demonstrated that expression of EGFR is maintained in hypoxic conditions via an unknown mechanism of translational control, despite global translation rates generally being attenuated under hypoxic conditions. In this report, we demonstrate that the human EGFR 5′ untranslated region (UTR) sequence can initiate the expression of a downstream open reading frame via an internal ribosome entry site (IRES). We show that this effect is not due to either cryptic promoter activity or splicing events. We have investigated the requirement of the EGFR IRES for eukaryotic initiation factor 4A (eIF4A), which is an RNA helicase responsible for processing RNA secondary structure as part of translation initiation. Treatment with hippuristanol (a potent inhibitor of eIF4A) caused a decrease in EGFR 5′ UTR-driven reporter activity and also a reduction in EGFR protein level. Importantly, we show that expression of a reporter gene under the control of the EGFR IRES is maintained under hypoxic conditions despite a fall in global translation rates

    Identification of Coevolving Residues and Coevolution Potentials Emphasizing Structure, Bond Formation and Catalytic Coordination in Protein Evolution

    Get PDF
    The structure and function of a protein is dependent on coordinated interactions between its residues. The selective pressures associated with a mutation at one site should therefore depend on the amino acid identity of interacting sites. Mutual information has previously been applied to multiple sequence alignments as a means of detecting coevolutionary interactions. Here, we introduce a refinement of the mutual information method that: 1) removes a significant, non-coevolutionary bias and 2) accounts for heteroscedasticity. Using a large, non-overlapping database of protein alignments, we demonstrate that predicted coevolving residue-pairs tend to lie in close physical proximity. We introduce coevolution potentials as a novel measure of the propensity for the 20 amino acids to pair amongst predicted coevolutionary interactions. Ionic, hydrogen, and disulfide bond-forming pairs exhibited the highest potentials. Finally, we demonstrate that pairs of catalytic residues have a significantly increased likelihood to be identified as coevolving. These correlations to distinct protein features verify the accuracy of our algorithm and are consistent with a model of coevolution in which selective pressures towards preserving residue interactions act to shape the mutational landscape of a protein by restricting the set of admissible neutral mutations

    Soil warming accelerates decomposition of fine woody debris

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Plant and Soil 356 (2012): 405-417, doi:10.1007/s11104-012-1130-x.Soil warming from global climate change could increase decomposition of fine woody debris (FWD), but debris size and quality may mitigate this effect. The goal of this study was to investigate the effect of soil warming on decomposition of fine woody debris of differing size and quality. We placed FWD of two size classes (2 × 20 cm and 4 × 40 cm) and four species (Acer saccharum, Betula lenta, Quercus rubra and Tsuga canadensis) in a soil warming and ambient area at Harvard Forest in central Massachusetts. We collected the debris from each area over two years and measured mass loss and lignin concentration. Warming increased mass loss for all species and size classes (by as much as 30%), but larger debris and debris with higher initial lignin content decomposed slower than smaller debris and debris with lower initial lignin content. Lignin degradation did not follow the same trends as mass loss. Lignin loss from the most lignin-rich species, T. canadensis, was the highest despite the fact that it lost mass the slowest. Our results suggest that soil warming will increase decomposition of FWD in temperate forests. It is imperative that future models and policy efforts account for this potential shift in the carbon storage pool

    Revisiting the pH-gated conformational switch on the activities of HisKA-family histidine kinases

    Get PDF
    Histidine is a versatile residue playing key roles in enzyme catalysis thanks to the chemistry of its imidazole group that can serve as nucleophile, general acid or base depending on its protonation state. In bacteria, signal transduction relies on two-component systems (TCS) which comprise a sensor histidine kinase (HK) containing a phosphorylatable catalytic His with phosphotransfer and phosphatase activities over an effector response regulator. Recently, a pH-gated model has been postulated to regulate the phosphatase activity of HisKA HKs based on the pH-dependent rotamer switch of the phosphorylatable His. Here, we have revisited this model from a structural and functional perspective on HK853-RR468 and EnvZ-OmpR TCS, the prototypical HisKA HKs. We have found that the rotamer of His is not influenced by the environmental pH, ruling out a pH-gated model and confirming that the chemistry of the His is responsible for the decrease in the phosphatase activity at acidic pH
    corecore