36 research outputs found

    Q-learning algorithm for resource allocation in WDMA-based optical wireless communication networks

    Get PDF
    Visible Light Communication (VLC) has been widely investigated during the last decade due to its ability to provide high data rates with low power consumption. In general, resource management is an important issue in cellular networks that can highly effect their performance. In this paper, an optimisation problem is formulated to assign each user to an optimal access point and a wavelength at a given time. This problem can be solved using mixed integer linear programming (MILP). However, using MILP is not considered a practical solution due to its complexity and memory requirements. In addition, accurate information must be provided to perform the resource allocation. Therefore, the optimisation problem is reformulated using reinforcement learning (RL), which has recently received tremendous interest due to its ability to interact with any environment without prior knowledge. In this paper, the resource allocation optimisation problem in VLC systems is investigated using the basic Q-learning algorithm. Two scenarios are simulated to compare the results with the previously proposed MILP model. The results demonstrate the ability of the Q-learning algorithm to provide optimal solutions close to the MILP model without prior knowledge of the system

    Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics

    Get PDF
    Background: Lipids have critical functions in cellular energy storage, structure and signaling. Many individual lipid molecules have been associated with the evolution of prostate cancer; however, none of them has been approved to be used as a biomarker. The aim of this study is to identify lipid molecules from hundreds plasma apparent lipid species as biomarkers for diagnosis of prostate cancer. Methodology/Principal Findings: Using lipidomics, lipid profiling of 390 individual apparent lipid species was performed on 141 plasma samples from 105 patients with prostate cancer and 36 male controls. High throughput data generated from lipidomics were analyzed using bioinformatic and statistical methods. From 390 apparent lipid species, 35 species were demonstrated to have potential in differentiation of prostate cancer. Within the 35 species, 12 were identified as individual plasma lipid biomarkers for diagnosis of prostate cancer with a sensitivity above 80%, specificity above 50% and accuracy above 80%. Using top 15 of 35 potential biomarkers together increased predictive power dramatically in diagnosis of prostate cancer with a sensitivity of 93.6%, specificity of 90.1% and accuracy of 97.3%. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) demonstrated that patient and control populations were visually separated by identified lipid biomarkers. RandomForest and 10-fold cross validation analyses demonstrated that the identified lipid biomarkers were able to predict unknown populations accurately, and this was not influenced by patient's age and race. Three out of 13 lipid classes, phosphatidylethanolamine (PE), ether-linked phosphatidylethanolamine (ePE) and ether-linked phosphatidylcholine (ePC) could be considered as biomarkers in diagnosis of prostate cancer. Conclusions/Significance: Using lipidomics and bioinformatic and statistical methods, we have identified a few out of hundreds plasma apparent lipid molecular species as biomarkers for diagnosis of prostate cancer with a high sensitivity, specificity and accuracy

    A multi-biometric iris recognition system based on a deep learning approach

    Get PDF
    YesMultimodal biometric systems have been widely applied in many real-world applications due to its ability to deal with a number of significant limitations of unimodal biometric systems, including sensitivity to noise, population coverage, intra-class variability, non-universality, and vulnerability to spoofing. In this paper, an efficient and real-time multimodal biometric system is proposed based on building deep learning representations for images of both the right and left irises of a person, and fusing the results obtained using a ranking-level fusion method. The trained deep learning system proposed is called IrisConvNet whose architecture is based on a combination of Convolutional Neural Network (CNN) and Softmax classifier to extract discriminative features from the input image without any domain knowledge where the input image represents the localized iris region and then classify it into one of N classes. In this work, a discriminative CNN training scheme based on a combination of back-propagation algorithm and mini-batch AdaGrad optimization method is proposed for weights updating and learning rate adaptation, respectively. In addition, other training strategies (e.g., dropout method, data augmentation) are also proposed in order to evaluate different CNN architectures. The performance of the proposed system is tested on three public datasets collected under different conditions: SDUMLA-HMT, CASIA-Iris- V3 Interval and IITD iris databases. The results obtained from the proposed system outperform other state-of-the-art of approaches (e.g., Wavelet transform, Scattering transform, Local Binary Pattern and PCA) by achieving a Rank-1 identification rate of 100% on all the employed databases and a recognition time less than one second per person

    Reinforcement Learning for Resource Allocation in Steerable Laser-Based Optical Wireless Systems

    No full text
    Vertical Cavity Surface Emitting Lasers (VCSELs) have demonstrated suitability for data transmission in indoor optical wireless communication (OWC) systems due to the high modulation bandwidth and low manufacturing cost of these sources. Specifically, resource allocation is one of the major challenges that can affect the performance of multi-user optical wireless systems. In this paper, an optimisation problem is formulated to optimally assign each user to an optical access point (AP) composed of multiple VCSELs within a VCSEL array at a certain time to maximise the signal to interference plus noise ratio (SINR). In this context, a mixed-integer linear programming (MILP) model is introduced to solve this optimisation problem. Despite the optimality of the MILP model, it is considered impractical due to its high complexity, high memory and full system information requirements. Therefore, reinforcement Learning (RL) is considered, which recently has been widely investigated as a practical solution for various optimisation problems in cellular networks due to its ability to interact with environments with no previous experience. In particular, a Q-learning (QL) algorithm is investigated to perform resource management in a steerable VCSEL-based OWC systems. The results demonstrate the ability of the QL algorithm to achieve optimal solutions close to the MILP model. Moreover, the adoption of beam steering, using holograms implemented by exploiting liquid crystal devices, results in further enhancement in the performance of the network considered
    corecore