705 research outputs found
Size and shape of the repetitive domain of high molecular weight wheat gluten proteins. 1. Small angle neutron scattering
The solution structure of the central repetitive domain of high molecular weight (HMW) wheat gluten proteins has been investigated for a range of concentrations and temperatures using mainly small-angle neutron scattering. A representative part of the repetitive domain (dBl) was studied as well as an "oligomer" basically consisting of four dBl units, which has a length similar to the complete central domain. The scattering data over the entire angular range of both proteins are in quantitative agreement with a structural model based on a worm-like chain, a model frequently used in polymer theory. This model describes the "supersecondary, structure" of dBl and dB4 as a semiflexible cylinder with a length of about 235 and 900 Angstrom, respectively, and a cross-sectional diameter of about 15 Angstrom. The flexibility of both proteins is characterized by a persistence length of about 13 Angstrom. Their structures are thus quantitatively identical, which implies that the central HMW domain can be elongated while retaining its structural characteristics. It seems conceivable that the flexible cylinder results from a helical structure, which resembles the beta-spiral observed in earlier studies on gluten proteins and elastin. However, compared to the previously, proposed structure of a (stiff) rod, our experiments clearly indicate flexibility of the cylinder. (C) 2003 Wiley Periodicals, Inc
High levels of dietary stearate promote adiposity and deteriorate hepatic insulin sensitivity
<p>Abstract</p> <p>Background</p> <p>Relatively little is known about the role of specific saturated fatty acids in the development of high fat diet induced obesity and insulin resistance. Here, we have studied the effect of stearate in high fat diets (45% energy as fat) on whole body energy metabolism and tissue specific insulin sensitivity.</p> <p>Methods</p> <p>C57Bl/6 mice were fed a low stearate diet based on palm oil or one of two stearate rich diets, one diet based on lard and one diet based on palm oil supplemented with tristearin (to the stearate level of the lard based diet), for a period of 5 weeks. <it>Ad libitum </it>fed Oxidative metabolism was assessed by indirect calorimetry at week 5. Changes in body mass and composition was assessed by DEXA scan analysis. Tissue specific insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp analysis and Western blot at the end of week 5.</p> <p>Results</p> <p>Indirect calorimetry analysis revealed that high levels of dietary stearate resulted in lower caloric energy expenditure characterized by lower oxidation of fatty acids. In agreement with this metabolic phenotype, mice on the stearate rich diets gained more adipose tissue mass. Whole body and tissue specific insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp and analysis of insulin induced PKB<sup>ser473 </sup>phosphorylation. Whole body insulin sensitivity was decreased by all high fat diets. However, while insulin-stimulated glucose uptake by peripheral tissues was impaired by all high fat diets, hepatic insulin sensitivity was affected only by the stearate rich diets. This tissue-specific pattern of reduced insulin sensitivity was confirmed by similar impairment in insulin-induced phosphorylation of PKB<sup>ser473 </sup>in both liver and skeletal muscle.</p> <p>Conclusion</p> <p>In C57Bl/6 mice, 5 weeks of a high fat diet rich in stearate induces a metabolic state favoring low oxidative metabolism, increased adiposity and whole body insulin resistance characterized by severe hepatic insulin resistance. These results indicate that dietary fatty acid composition <it>per sé </it>rather than dietary fat content determines insulin sensitivity in liver of high fat fed C57Bl/6 mice.</p
Building a Professional Identity and an Academic Career Track in Translational Medicine
Biomedical scientists aim to contribute to further understanding of disease pathogenesis and to develop new diagnostic and therapeutic tools that relieve disease burden. Yet the majority of biomedical scientists do not develop their academic career or professional identity as “translational scientists,” and are not actively involved in the continuum from scientific concept to development of new strategies that change medical practice. The collaborative nature of translational medicine and the lengthy process of bringing innovative findings from bench to bedside conflict with established pathways of building a career in academia. This collaborative approach also poses a problem for evaluating individual contributions and progress. The traditional evaluation of scientific success measured by the impact and number of publications and grants scientists achieve is inadequate when the product is a team effort that may take decades to complete. Further, where scientists are trained to be independent thinkers and to establish unique scientific niches, translational medicine depends on combining individual insights and strengths for the greater good. Training programs that are specifically geared to prepare scientists for a career in translational medicine are not widespread. In addition, the legal, regulatory, scientific and clinical infrastructure and support required for translational research is often underdeveloped in academic institutions and funding organizations, further discouraging the development and success of translational scientists in the academic setting. In this perspective we discuss challenges and potential solutions that could allow for physicians, physician scientists and basic scientists to develop a professional identity and a fruitful career in translational medicine
Novel metallic implantation technique for osteochondral defects of the medial talar dome: A cadaver study
BACKGROUND AND PURPOSE: A metallic inlay implant (HemiCAP) with 15 offset sizes has been developed for the treatment of localized osteochondral defects of the medial talar dome. The aim of this study was to test the following hypotheses: (1) a matching offset size is available for each talus, (2) the prosthetic device can be reproducibly implanted slightly recessed in relation to the talar cartilage level, and (3) with this implantation level, excessive contact pressures on the opposite tibial cartilage are avoided. METHODS: The prosthetic device was implanted in 11 intact fresh-frozen human cadaver ankles, aiming its surface 0.5 mm below cartilage level. The implantation level was measured at 4 margins of each implant. Intraarticular contact pressures were measured before and after implantation, with compressive forces of 1,000-2,000 N and the ankle joint in plantigrade position, 10 dorsiflexion, and 14 plantar flexion. RESULTS: There was a matching offset size available for each specimen. The mean implantation level was 0.45 (SD 0.18) mm below the cartilage surface. The defect area accounted for a median of 3% (0.02-18) of the total ankle contact pressure before implantation. This was reduced to 0.1% (0.02-13) after prosthetic implantation. INTERPRETATION: These results suggest that the implant can be applied clinically in a safe way, with appropriate offset sizes for various talar domes and without excessive pressure on the opposite cartilag
Hidden Orbital Order in
When matter is cooled from high temperatures, collective instabilities
develop amongst its constituent particles that lead to new kinds of order. An
anomaly in the specific heat is a classic signature of this phenomenon. Usually
the associated order is easily identified, but sometimes its nature remains
elusive. The heavy fermion metal is one such example, where the
order responsible for the sharp specific heat anomaly at has
remained unidentified despite more than seventeen years of effort. In
, the coexistence of large electron-electron repulsion and
antiferromagnetic fluctuations in leads to an almost incompressible
heavy electron fluid, where anisotropically paired quasiparticle states are
energetically favored. In this paper we use these insights to develop a
detailed proposal for the hidden order in . We show that
incommensurate orbital antiferromagnetism, associated with circulating currents
between the uranium ions, can account for the local fields and entropy loss
observed at the transition; furthermore we make detailed predictions for
neutron scattering measurements
Vitality and the course of limitations in activities in osteoarthritis of the hip or knee
<p>Abstract</p> <p>Background</p> <p>The objective of the study was to determine whether psychological and social factors predict the course of limitations in activities in elderly patients with osteoarthritis of the hip or knee, in addition to established somatic and cognitive risk factors.</p> <p>Methods</p> <p>A longitudinal cohort study with a follow-up period of three years was conducted. Patients (N = 237) with hip or knee osteoarthritis were recruited from rehabilitation centers and hospitals. Body functions, comorbidity, cognitive functioning, limitations in activities and psychological and social factors (mental health, vitality, pain coping and perceived social support) were assessed. Statistical analyses included univariate and multivariate regression analyses. Psychological and social factors were added to a previously developed model with body functions, comorbidity and cognitive functioning.</p> <p>Results</p> <p>In knee OA, low vitality has a negative impact on the course of self-reported and performance-based limitations in activities, after controlling for somatic and cognitive factors. In hip OA, psychological and social factors had no additional contribution to the model.</p> <p>Conclusion</p> <p>Low vitality predicts deterioration of limitations in activities in elderly patients with osteoarthritis of the knee, in addition to established somatic and cognitive risk factors. However, the contribution of vitality is relatively small. Results of this study are relevant for the group of patients with knee or hip OA, attending hospitals and rehabilitation centers.</p
MASA DEPAN IAIN SYEKH NURJATI CIREBON: Strategi Kampus Entrepreuner Berbasis Lokal
The improvement of quality of life should be the main objective of higher education, including at IAIN Syeikh Nurjati Cirebon. The globalization of higher education is expected not too concerned with the economic needs through the commodification of the institution. Reforms that still have to create a balance between the ability to collect resources and produce products, which in the context of higher education graduates in the form of human resources, quality, useful, armed with expertise that qualified and helped build community toward a better life , This can be done through the development of academic entrepreneurship in shaping the entrepreneurial spirit of students, including through co-operation program of poverty alleviation between Bank Indonesia Cirebon with IAIN Syekh Nurjati Cirebo
Clustering and Alignment of Polymorphic Sequences for HLA-DRB1 Genotyping
Located on Chromosome 6p21, classical human leukocyte antigen genes are highly polymorphic. HLA alleles associate with a variety of phenotypes, such as narcolepsy, autoimmunity, as well as immunologic response to infectious disease. Moreover, high resolution genotyping of these loci is critical to achieving long-term survival of allogeneic transplants. Development of methods to obtain high resolution analysis of HLA genotypes will lead to improved understanding of how select alleles contribute to human health and disease risk. Genomic DNAs were obtained from a cohort of n = 383 subjects recruited as part of an Ulcerative Colitis study and analyzed for HLA-DRB1. HLA genotypes were determined using sequence specific oligonucleotide probes and by next-generation sequencing using the Roche/454 GSFLX instrument. The Clustering and Alignment of Polymorphic Sequences (CAPSeq) software application was developed to analyze next-generation sequencing data. The application generates HLA sequence specific 6-digit genotype information from next-generation sequencing data using MUMmer to align sequences and the R package diffusionMap to classify sequences into their respective allelic groups. The incorporation of Bootstrap Aggregating, Bagging to aid in sorting of sequences into allele classes resulted in improved genotyping accuracy. Using Bagging iterations equal to 60, the genotyping results obtained using CAPSeq when compared with sequence specific oligonucleotide probe characterized 4-digit genotypes exhibited high rates of concordance, matching at 759 out of 766 (99.1%) alleles. © 2013 Ringquist et al
Transformation of the rodent malaria parasite Plasmodium chabaudi and generation of a stable fluorescent line PcGFPCON
<p>Abstract</p> <p>Background</p> <p>The rodent malaria parasite <it>Plasmodium chabaudi </it>has proven of great value in the analysis of fundamental aspects of host-parasite-vector interactions implicated in disease pathology and parasite evolutionary ecology. However, the lack of gene modification technologies for this model has precluded more direct functional studies.</p> <p>Methods</p> <p>The development of <it>in vitro </it>culture methods to yield <it>P. chabaudi </it>schizonts for transfection and conditions for genetic modification of this rodent malaria model are reported.</p> <p>Results</p> <p>Independent <it>P. chabaudi </it>gene-integrant lines that constitutively express high levels of green fluorescent protein throughout their life cycle have been generated.</p> <p>Conclusion</p> <p>Genetic modification of <it>P. chabaudi </it>is now possible. The production of genetically distinct reference lines offers substantial advances to our understanding of malaria parasite biology, especially interactions with the immune system during chronic infection.</p
- …