2,010 research outputs found
Cross modal perception of body size in domestic dogs (Canis familiaris)
While the perception of size-related acoustic variation in animal vocalisations is well documented, little attention has been given to how this information might be integrated with corresponding visual information. Using a cross-modal design, we tested the ability of domestic dogs to match growls resynthesised to be typical of either a large or a small dog to size- matched models. Subjects looked at the size-matched model significantly more often and for a significantly longer duration than at the incorrect model, showing that they have the ability to relate information about body size from the acoustic domain to the appropriate visual category. Our study suggests that the perceptual and cognitive mechanisms at the basis of size assessment in mammals have a multisensory nature, and calls for further investigations of the multimodal processing of size information across animal species
Knee-clicks and visual traits indicate fighting ability in eland antelopes: multiple messages and back-up signals
Abstract Background Given the costs of signalling, why do males often advertise their fighting ability to rivals using several signals rather than just one? Multiple signalling theories have developed largely in studies of sexual signals, and less is known about their applicability to intra-sexual communication. We here investigate the evolutionary basis for the intricate agonistic signalling system in eland antelopes, paying particular attention to the evolutionary phenomenon of loud knee-clicking. Results A principal components analysis separated seven male traits into three groups. The dominant frequency of the knee-clicking sound honestly indicated body size, a main determinant of fighting ability. In contrast, the dewlap size increased with estimated age rather than body size, suggesting that, by magnifying the silhouette of older bulls disproportionately, the dewlap acts as an indicator of age-related traits such as fighting experience. Facemask darkness, frontal hairbrush size and body greyness aligned with a third underlying variable, presumed to be androgen-related aggression. A longitudinal study provided independent support of these findings. Conclusion The results show that the multiple agonistic signals in eland reflect three separate components of fighting ability: (1) body size, (2) age and (3) presumably androgen-related aggression, which is reflected in three backup signals. The study highlights how complex agonistic signalling systems can evolve through the simultaneous action of several selective forces, each of which favours multiple signals. Specifically, loud knee-clicking is discovered to be an honest signal of body size, providing an exceptional example of the potential for non-vocal acoustic communication in mammals.</p
Negative phenotypic and genetic associations between copulation duration and longevity in male seed beetles
Reproduction can be costly and is predicted to trade-off against other characters. However, while these trade-offs are well documented for females, there has been less focus on aspects of male reproduction. Furthermore, those studies that have looked at males typically only investigate phenotypic associations, with the underlying genetics often ignored. Here, we report on phenotypic and genetic trade-offs in male reproductive effort in the seed beetle, Callosobruchus maculatus. We find that the duration of a male's first copulation is negatively associated with subsequent male survival, phenotypically and genetically. Our results are consistent with life-history theory and suggest that like females, males trade-off reproductive effort against longevity
Environmental and Parental Influences on Offspring Health and Growth in Great Tits (Parus major)
PMCID: PMC3728352This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Temozolomide 3 weeks on and 1 week off as first-line therapy for recurrent glioblastoma: phase II study from gruppo italiano cooperativo di neuro-oncologia (GICNO)
The efficacy of temozolomide strongly depends on O6-alkylguanine DNA-alkyl transferase (AGAT), which repairs DNA damage caused by the drug itself. Low-dose protracted temozolomide administration can decrease AGAT activity. The main end point of the present study was therefore to test progression-free survival at 6 months (PFS-6) in glioblastoma patients following a prolonged temozolomide schedule. Chemonaïve glioblastoma patients with disease recurrence or progression after surgery and standard radiotherapy were considered eligible. Chemotherapy cycles consisted of temozolomide 75 mg/m2/daily for 21 days every 28 days until disease progression. O6-methyl-guanine-DNA-methyl-tranferase (MGMT) was determined in 22 patients (66.7%). A total of 33 patients (median age 57 years, range 31–71) with a median KPS of 90 (range 60–100) were accrued. The overall response rate was 9%, and PFS-6 30.3% (95% CI:18–51%). No correlation was found between the MGMT promoter methylation status of the tumours and the overall response rate, time to progression and survival. In 153 treatment cycles delivered, the most common grade 3/4 event was lymphopoenia. The prolonged temozolomide schedule considered in the present study is followed by a high PFS-6 rate; toxicity is acceptable. Further randomised trials should therefore be conducted to confirm the efficacy of this regimen
MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice
Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases
Search for High Mass Photon Pairs in p-pbar --> gamma-gamma-jet-jet Events at sqrt(s)=1.8 TeV
A search has been carried out for events in the channel p-barp --> gamma
gamma jet jet. Such a signature can characterize the production of a
non-standard Higgs boson together with a W or Z boson. We refer to this
non-standard Higgs, having standard model couplings to vector bosons but no
coupling to fermions, as a "bosonic Higgs." With the requirement of two high
transverse energy photons and two jets, the diphoton mass (m(gamma gamma))
distribution is consistent with expected background. A 90(95)% C.L. upper limit
on the cross section as a function of mass is calculated, ranging from
0.60(0.80) pb for m(gamma gamma) = 65 GeV/c^2 to 0.26(0.34) pb for m(gamma
gamma) = 150 GeV/c^2, corresponding to a 95% C.L. lower limit on the mass of a
bosonic Higgs of 78.5 GeV/c^2.Comment: 9 pages, 3 figures. Replacement has new H->gamma gamma branching
ratios and corresponding new mass limit
A comparison of the effects of physical and chemical mutagens in sesame (Sesamum indicum L.)
Three sesame genotypes (Rama, SI 1666 and IC 21706) were treated with physical (γ-rays: 200 Gy, 400 Gy or 600 Gy) or chemical (ethyl methane sulphonate, EMS: 0.5%, 1.0%, 1.5% or 2.0%) mutagens and their mutagenic effectiveness and efficiency were estimated in the M 2 generation. The M 3 generation was used to identify the most effective mutagen and dose for induction of mutations. The average effectiveness of EMS was much higher than γ-rays. The lowest dose of γ-rays (200 Gy) and the lowest concentration of EMS (0.5%) showed the highest mutagenic efficiency in all genotypes. Analysis of the M 3 generation data based on parameters such as the variance ratio and the difference in residual variances derived from the model of Montalván and Ando indicated that 0.5% concentration of EMS was the most effective treatment for inducing mutations
Limits on WWZ and WW\gamma couplings from p\bar{p}\to e\nu jj X events at \sqrt{s} = 1.8 TeV
We present limits on anomalous WWZ and WW-gamma couplings from a search for
WW and WZ production in p-bar p collisions at sqrt(s)=1.8 TeV. We use p-bar p
-> e-nu jjX events recorded with the D0 detector at the Fermilab Tevatron
Collider during the 1992-1995 run. The data sample corresponds to an integrated
luminosity of 96.0+-5.1 pb^(-1). Assuming identical WWZ and WW-gamma coupling
parameters, the 95% CL limits on the CP-conserving couplings are
-0.33<lambda<0.36 (Delta-kappa=0) and -0.43<Delta-kappa<0.59 (lambda=0), for a
form factor scale Lambda = 2.0 TeV. Limits based on other assumptions are also
presented.Comment: 11 pages, 2 figures, 2 table
Search for New Physics in e mu X Data at D0 Using Sleuth: A Quasi-Model-Independent Search Strategy for New Physics
We present a quasi-model-independent search for the physics responsible for
electroweak symmetry breaking. We define final states to be studied, and
construct a rule that identifies a set of relevant variables for any particular
final state. A new algorithm ("Sleuth") searches for regions of excess in those
variables and quantifies the significance of any detected excess. After
demonstrating the sensitivity of the method, we apply it to the semi-inclusive
channel e mu X collected in 108 pb^-1 of ppbar collisions at sqrt(s) = 1.8 TeV
at the D0 experiment during 1992-1996 at the Fermilab Tevatron. We find no
evidence of new high p_T physics in this sample.Comment: 23 pages, 12 figures. Submitted to Physical Review
- …