12,947 research outputs found
Classical orbital paramagnetism in non-equilibrium steady state
We report the results of our numerical simulation of classical-dissipative
dynamics of a charged particle subjected to a non-markovian stochastic forcing.
We find that the system develops a steady-state orbital magnetic moment in the
presence of a static magnetic field. Very significantly, the sign of the
orbital magnetic moment turns out to be {\it paramagnetic} for our choice of
parameters, varied over a wide range. This is shown specifically for the case
of classical dynamics driven by a Kubo-Anderson type non-markovian noise.
Natural spatial boundary condition was imposed through (1) a soft (harmonic)
confining potential, and (2) a hard potential, approximating a reflecting wall.
There was no noticeable qualitative difference. What appears to be crucial to
the orbital magnetic effect noticed here is the non-markovian property of the
driving noise chosen. Experimental realization of this effect on the laboratory
scale, and its possible implications are briefly discussed. We would like to
emphasize that the above steady-state classical orbital paramagnetic moment
complements, rather than contradicts the Bohr-van Leeuwen (BvL) theorem on the
absence of classical orbital diamagnetism in thermodynamic equilibrium.Comment: 6 pages, 4 figures, Has appeared in Journal of Astrophysics and
  Astronomy special issue on 'Physics of Neutron Stars and Related Objects',
  celebrating the 75th birth-year of G. Srinivasa
Shape-resonant superconductivity in nanofilms: from weak to strong coupling
Ultrathin superconductors of different materials are becoming a powerful
platform to find mechanisms for enhancement of superconductivity, exploiting
shape resonances in different superconducting properties. Here we evaluate the
superconducting gap and its spatial profile, the multiple gap components, and
the chemical potential, of generic superconducting nanofilms, considering the
pairing attraction and its energy scale as tunable parameters, from weak to
strong coupling, at fixed electron density. Superconducting properties are
evaluated at mean field level as a function of the thickness of the nanofilm,
in order to characterize the shape resonances in the superconducting gap. We
find that the most pronounced shape resonances are generated for weakly coupled
superconductors, while approaching the strong coupling regime the shape
resonances are rounded by a mixing of the subbands due to the large energy gaps
extending over large energy scales. Finally, we find that the spatial profile,
transverse to the nanofilm, of the superconducting gap acquires a flat behavior
in the shape resonance region, indicating that a robust and uniform multigap
superconducting state can arise at resonance.Comment: 7 pages, 4 figures. Submitted to the Proceedings of the Superstripes
  2016 conferenc
Why do Particle Clouds Generate Electric Charges?
Grains in desert sandstorms spontaneously generate strong electrical charges;
likewise volcanic dust plumes produce spectacular lightning displays. Charged
particle clouds also cause devastating explosions in food, drug and coal
processing industries. Despite the wide-ranging importance of granular charging
in both nature and industry, even the simplest aspects of its causes remain
elusive, because it is difficult to understand how inert grains in contact with
little more than other inert grains can generate the large charges observed.
Here, we present a simple yet predictive explanation for the charging of
granular materials in collisional flows. We argue from very basic
considerations that charge transfer can be expected in collisions of identical
dielectric grains in the presence of an electric field, and we confirm the
model's predictions using discrete-element simulations and a tabletop granular
experiment
Alpha-particle-induced complex chromosome exchanges transmitted through extra-thymic lymphopoiesis in vitro show evidence of emerging genomic instability
Human exposure to high-linear energy transfer α-particles includes environmental (e.g. radon gas and its decay progeny), medical (e.g. radiopharmaceuticals) and occupational (nuclear industry) sources. The associated health risks of α-particle exposure for lung cancer are well documented however the risk estimates for leukaemia remain uncertain. To further our understanding of α-particle effects in target cells for leukaemogenesis and also to seek general markers of individual exposure to α-particles, this study assessed the transmission of chromosomal damage initially-induced in human haemopoietic stem and progenitor cells after exposure to high-LET α-particles. Cells surviving exposure were differentiated into mature T-cells by extra-thymic T-cell differentiation in vitro. Multiplex fluorescence in situ hybridisation (M-FISH) analysis of naïve T-cell populations showed the occurrence of stable (clonal) complex chromosome aberrations consistent with those that are characteristically induced in spherical cells by the traversal of a single α-particle track. Additionally, complex chromosome exchanges were observed in the progeny of irradiated mature T-cell populations. In addition to this, newly arising de novo chromosome aberrations were detected in cells which possessed clonal markers of α-particle exposure and also in cells which did not show any evidence of previous exposure, suggesting ongoing genomic instability in these populations. Our findings support the usefulness and reliability of employing complex chromosome exchanges as indicators of past or ongoing exposure to high-LET radiation and demonstrate the potential applicability to evaluate health risks associated with α-particle exposure.This work was supported by the Department of Health, UK. Contract RRX95 (RMA NSDTG)
An inhibitory pull-push circuit in frontal cortex.
Push-pull is a canonical computation of excitatory cortical circuits. By contrast, we identify a pull-push inhibitory circuit in frontal cortex that originates in vasoactive intestinal polypeptide (VIP)-expressing interneurons. During arousal, VIP cells rapidly and directly inhibit pyramidal neurons; VIP cells also indirectly excite these pyramidal neurons via parallel disinhibition. Thus, arousal exerts a feedback pull-push influence on excitatory neurons-an inversion of the canonical push-pull of feedforward input
Super-shell structure in harmonically trapped fermionic gases and its semi-classical interpretation
It was recently shown in self-consistent Hartree-Fock calculations that a
harmonically trapped dilute gas of fermionic atoms with a repulsive two-body
interaction exhibits a pronounced {\it super-shell} structure: the shell
fillings due to the spherical harmonic trapping potential are modulated by a
beat mode. This changes the ``magic numbers'' occurring between the beat nodes
by half a period. The length and amplitude of the beating mode depends on the
strength of the interaction. We give a qualitative interpretation of the beat
structure in terms of a semiclassical trace formula that uniformly describes
the symmetry breaking U(3)  SO(3) in a 3D harmonic oscillator potential
perturbed by an anharmonic term  with arbitrary strength. We show
that at low Fermi energies (or particle numbers), the beating gross-shell
structure of this system is dominated solely by the two-fold degenerate
circular and (diametrically) pendulating orbits.Comment: Final version of procedings for the 'Nilsson conference
Neutrons from multiplicity-selected Au-Au collisions at 150, 250, 400, and 650 AMeV
We measured neutron triple-differential cross sections from
multiplicity-selected Au-Au collisions at 150, 250, 400, and 650 \AMeV. The
reaction plane for each collision was estimated from the summed transverse
velocity vector of the charged fragments emitted in the collision. We examined
the azimuthal distribution of the triple-differential cross sections as a
function of the polar angle and the neutron rapidity. We extracted the average
in--plane transverse momentum  and the normalized
observable , where  is the neutron
transverse momentum, as a function of the neutron center-of-mass rapidity, and
we examined the dependence of these observables on beam energy. These
collective flow observables for neutrons, which are consistent with those of
protons plus bound nucleons from the Plastic Ball Group, agree with the
Boltzmann--Uehling--Uhlenbeck (BUU) calculations with a momentum--dependent
interaction. Also, we calculated the polar-angle-integrated maximum azimuthal
anisotropy ratio R from the value of .Comment: 20 LaTeX pages. 11 figures to be faxed on request, send email to
  sender's addres
An economic evaluation of expanding hookworm control strategies to target the whole community.
Background: The WHO treatment guidelines for the soil-transmitted helminths (STH) focus on targeting children for the control of morbidity induced by heavy infections. However, unlike the other STHs, the majority of hookworm infections are harboured by adults. This untreated burden may have important implications for controlling both hookworm’s morbidity and transmission. This is particularly significant in the context of the increased interest in investigating STH elimination strategies.
Methods We used a deterministic STH transmission model and parameter estimates derived from field epidemiological studies to evaluate the impact of child-targeted (2–14 year olds) versus community-wide treatment against hookworm in terms of preventing morbidity and the timeframe for breaking transmission. Furthermore, we investigated how mass treatment may influence the long-term programmatic costs of preventive chemotherapy for hookworm.
Results: The model projected that a large proportion of the overall morbidity due to hookworm was unaffected by the current child-targeted strategy. Furthermore, driving worm burdens to levels low enough to potentially break transmission was only possible when using community-wide treatment. Due to these projected reductions in programme duration, it was possible for community-wide treatment to generate cost savings – even if it notably increases the annual distribution costs.
Conclusions: Community-wide treatment is notably more cost-effective for controlling hookworm’s morbidity and transmission than the current child-targeted strategies and could even be cost-saving in many settings in the longer term. These calculations suggest that it is not optimum to treat using the same treatment strategies as other STH. Hookworm morbidity and transmission control require community-wide treatment.</p
Global Ethics and Nanotechnology: A Comparison of the Nanoethics Environments of the EU and China
The following article offers a brief overview of current nanotechnology policy, regulation and ethics in Europe and The People’s Republic of China with the intent of noting (dis)similarities in approach, before focusing on the involvement of the public in science and technology policy (i.e. participatory Technology Assessment). The conclusions of this article are, that (a) in terms of nanosafety as expressed through policy and regulation, China PR and the EU have similar approaches towards, and concerns about, nanotoxicity—the official debate on benefits and risks is not markedly different in the two regions; (b) that there is a similar economic drive behind both regions’ approach to nanodevelopment, the difference being the degree of public concern admitted; and (c) participation in decision-making is fundamentally different in the two regions. Thus in China PR, the focus is on the responsibility of the scientist; in the EU, it is about government accountability to the public. The formulation of a Code of Conduct for scientists in both regions (China PR’s predicted for 2012) reveals both similarity and difference in approach to nanotechnology development. This may change, since individual responsibility alone cannot guide S&T development, and as public participation is increasingly seen globally as integral to governmental decision-making
The relativistic Sagnac Effect: two derivations
The phase shift due to the Sagnac Effect, for relativistic matter and
electromagnetic beams, counter-propagating in a rotating interferometer, is
deduced using two different approaches. From one hand, we show that the
relativistic law of velocity addition leads to the well known Sagnac time
difference, which is the same independently of the physical nature of the
interfering beams, evidencing in this way the universality of the effect.
Another derivation is based on a formal analogy with the phase shift induced by
the magnetic potential for charged particles travelling in a region where a
constant vector potential is present: this is the so called Aharonov-Bohm
effect. Both derivations are carried out in a fully relativistic context, using
a suitable 1+3 splitting that allows us to recognize and define the space where
electromagnetic and matter waves propagate: this is an extended 3-space, which
we call "relative space". It is recognized as the only space having an actual
physical meaning from an operational point of view, and it is identified as the
'physical space of the rotating platform': the geometry of this space turns out
to be non Euclidean, according to Einstein's early intuition.Comment: 49 pages, LaTeX, 3 EPS figures. Revised (final) version, minor
  corrections; to appear in "Relativity in Rotating Frames", ed. G. Rizzi and
  M.L. Ruggiero, Kluwer Academic Publishers, Dordrecht, (2003). See also
  http://digilander.libero.it/solciclo
- …
