research

Super-shell structure in harmonically trapped fermionic gases and its semi-classical interpretation

Abstract

It was recently shown in self-consistent Hartree-Fock calculations that a harmonically trapped dilute gas of fermionic atoms with a repulsive two-body interaction exhibits a pronounced {\it super-shell} structure: the shell fillings due to the spherical harmonic trapping potential are modulated by a beat mode. This changes the ``magic numbers'' occurring between the beat nodes by half a period. The length and amplitude of the beating mode depends on the strength of the interaction. We give a qualitative interpretation of the beat structure in terms of a semiclassical trace formula that uniformly describes the symmetry breaking U(3) \to SO(3) in a 3D harmonic oscillator potential perturbed by an anharmonic term r4\propto r^4 with arbitrary strength. We show that at low Fermi energies (or particle numbers), the beating gross-shell structure of this system is dominated solely by the two-fold degenerate circular and (diametrically) pendulating orbits.Comment: Final version of procedings for the 'Nilsson conference

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019
    Last time updated on 03/01/2025