It was recently shown in self-consistent Hartree-Fock calculations that a
harmonically trapped dilute gas of fermionic atoms with a repulsive two-body
interaction exhibits a pronounced {\it super-shell} structure: the shell
fillings due to the spherical harmonic trapping potential are modulated by a
beat mode. This changes the ``magic numbers'' occurring between the beat nodes
by half a period. The length and amplitude of the beating mode depends on the
strength of the interaction. We give a qualitative interpretation of the beat
structure in terms of a semiclassical trace formula that uniformly describes
the symmetry breaking U(3) → SO(3) in a 3D harmonic oscillator potential
perturbed by an anharmonic term ∝r4 with arbitrary strength. We show
that at low Fermi energies (or particle numbers), the beating gross-shell
structure of this system is dominated solely by the two-fold degenerate
circular and (diametrically) pendulating orbits.Comment: Final version of procedings for the 'Nilsson conference