219 research outputs found

    Mobile Resource Guarantees for Smart Devices

    Get PDF
    Abstract. We present the Mobile Resource Guarantees framework: a system for ensuring that downloaded programs are free from run-time violations of resource bounds. Certificates are attached to code in the form of efficiently checkable proofs of resource bounds; in contrast to cryptographic certificates of code origin, these are independent of trust networks. A novel programming language with resource constraints encoded in function types is used to streamline the generation of proofs of resource usage.

    Radiogenic isotopes: New tools help reconstruct paleocean circulation and erosional input

    Get PDF
    Ocean and atmosphere circulation and continental weathering regimes have undergone great changes over thousands of years as well as tens of millions of years. During the glacial stages of the Pleistocene, ocean circulation was generally more sluggish and deep water circulation in the Atlantic had a shallower flow. At the same time, weathering on the continents was enhanced by glacial erosion, particularly in high northern latitudes, which increased the input of erosional detritus into the ocean. In addition, atmospheric pressure gradients were larger, leading to higher wind speeds and increased supply of aeolian dust to the ocean. Prior to the onset of Northern Hemisphere glaciation and pronounced glacial/interglacial cyclicity at ∼3 m.ya., global climate was warmer than at present. There is also evidence for a more vigorous thermohaline circulation during the early Pliocene

    Double quantum dot turnstile as an electron spin entangler

    Full text link
    We study the conditions for a double quantum dot system to work as a reliable electron spin entangler, and the efficiency of a beam splitter as a detector for the resulting entangled electron pairs. In particular, we focus on the relative strengths of the tunneling matrix elements, the applied bias and gate voltage, the necessity of time-dependent input/output barriers, and the consequence of considering wavepacket states for the electrons as they leave the double dot to enter the beam splitter. We show that a double quantum dot turnstile is, in principle, an efficient electron spin entangler or entanglement filter because of the exchange coupling between the dots and the tunable input/output potential barriers, provided certain conditions are satisfied in the experimental set-up.Comment: published version; minor error correcte

    Antineutrinos from Earth: A reference model and its uncertainties

    Full text link
    We predict geoneutrino fluxes in a reference model based on a detailed description of Earth's crust and mantle and using the best available information on the abundances of uranium, thorium, and potassium inside Earth's layers. We estimate the uncertainties of fluxes corresponding to the uncertainties of the element abundances. In addition to distance integrated fluxes, we also provide the differential fluxes as a function of distance from several sites of experimental interest. Event yields at several locations are estimated and their dependence on the neutrino oscillation parameters is discussed. At Kamioka we predict N(U+Th)=35 +- 6 events for 10^{32} proton yr and 100% efficiency assuming sin^2(2theta)=0.863 and delta m^2 = 7.3 X 10^{-5} eV^2. The maximal prediction is 55 events, obtained in a model with fully radiogenic production of the terrestrial heat flow.Comment: 24 pages, ReVTeX4, plus 7 postscript figures; minor formal changes to match version to be published in PR

    Cold uniform matter and neutron stars in the quark-mesons-coupling model

    Get PDF
    A new density dependent effective baryon-baryon interaction has been recently derived from the quark-meson-coupling (QMC) model, offering impressive results in application to finite nuclei and dense baryon matter. This self-consistent, relativistic quark-level approach is used to construct the Equation of State (EoS) and to calculate key properties of high density matter and cold, slowly rotating neutron stars. The results include predictions for the maximum mass of neutron star models, together with the corresponding radius and central density, as well the properties of neutron stars with mass of order 1.4 MM_\odot. The cooling mechanism allowed by the QMC EoS is explored and the parameters relevant to slow rotation, namely the moment of inertia and the period of rotation investigated. The results of the calculation, which are found to be in good agreement with available observational data, are compared with the predictions of more traditional EoS. The QMC EoS provides cold neutron star models with maximum mass 1.9--2.1 M_\odot, with central density less than 6 times nuclear saturation density (n0=0.16fm3n_{0}= 0.16 {\rm fm}^{-3}) and offers a consistent description of the stellar mass up to this density limit. In contrast with other models, QMC predicts no hyperon contribution at densities lower than 3n03n_0, for matter in β\beta-equilibrium. At higher densities, Ξ,0\Xi^{-,0} and Λ\Lambda hyperons are present

    Dark Matter signals from Draco and Willman 1: Prospects for MAGIC II and CTA

    Full text link
    The next generation of ground-based Imaging Air Cherenkov Telescopes (IACTs) will play an important role in indirect dark matter searches. In this article, we consider two particularly promising candidate sources for dark matter annihilation signals, the nearby dwarf galaxies Draco and Willman 1, and study the prospects of detecting such a signal for the soon-operating MAGIC II telescope system as well as for the planned installation of CTA, taking special care of describing the experimental features that affect the detectional prospects. For the first time in such a study, we fully take into account the effect of internal bremsstrahlung, which has recently been shown to considerably enhance, in some cases, the gamma-ray flux at the high energies where Atmospheric Cherenkov Telescopes operate, thus leading to significantly harder annihilation spectra than traditionally considered. While the detection of the spectral features introduced by internal bremsstrahlung would constitute a smoking gun signature for dark matter annihilation, we find that for most models the overall flux still remains at a level that will be challenging to detect unless one adopts rather (though by no means overly) optimistic astrophysical assumptions about the distribution of dark matter in the dwarfs.Comment: 10 pages, 4 figures, minor changes, matches the published version (JCAP

    Abnormal number of Nambu-Goldstone bosons in the color-asymmetric 2SC phase of an NJL-type model

    Full text link
    We consider an extended Nambu--Jona-Lasinio model including both (q \bar q)- and (qq)-interactions with two light-quark flavors in the presence of a single (quark density) chemical potential. In the color superconducting phase of the quark matter the color SU(3) symmetry is spontaneously broken down to SU(2). If the usual counting of Goldstone bosons would apply, five Nambu-Goldstone (NG) bosons corresponding to the five broken color generators should appear in the mass spectrum. Unlike that expectation, we find only three gapless diquark excitations of quark matter. One of them is an SU(2)-singlet, the remaining two form an SU(2)-(anti)doublet and have a quadratic dispersion law in the small momentum limit. These results are in agreement with the Nielsen-Chadha theorem, according to which NG-bosons in Lorentz-noninvariant systems, having a quadratic dispersion law, must be counted differently. The origin of the abnormal number of NG-bosons is shown to be related to a nonvanishing expectation value of the color charge operator Q_8 reflecting the lack of color neutrality of the ground state. Finally, by requiring color neutrality, two massive diquarks are argued to become massless, resulting in a normal number of five NG-bosons with usual linear dispersion laws.Comment: 13 pages, 4 figures, revtex

    Destruction of chemical warfare surrogates using a portable atmospheric pressure plasma jet

    Get PDF
    Today’s reality is connected with mitigation of threats from the new chemical and biological warfare agents. A novel investigation of cold plasmas in contact with liquids presented in this paper demonstrated that the chemically reactive environment produced by atmospheric pressure plasma jet (APPJ) is potentially capable of rapid destruction of chemical warfare agents in a broad spectrum. The decontamination of three different chemical warfare agent surrogates dissolved in liquid is investigated by using an easily transportable APPJ. The jet is powered by a kHz signal source connected to a low-voltage DC source and with He as working gas. The detailed investigation of electrical properties is performed for various plasmas at different distances from the sample. The measurements of plasma properties in situ are supported by the optical spectrometry measurements, whereas the high performance liquid chromatography measurements before and after the treatment of aqueous solutions of Malathion, Fenitrothion and Dimethyl Methylphosphonate. These solutions are used to evaluate destruction and its efficiency for specific neural agent simulants. The particular removal rates are found to be from 56% up to 96% during 10 min treatment. The data obtained provide basis to evaluate APPJ’s efficiency at different operating conditions. The presented results are promising and could be improved with different operating conditions and optimization of the decontamination process
    corecore