91 research outputs found

    Prospecting in late-type dwarfs: A calibration of infrared and visible spectroscopic metallicities of late K and M dwarfs spanning 1.5 dex

    Get PDF
    Knowledge of late K and M dwarf metallicities can be used to guide planet searches and constrain planet formation models. However, the determination of metallicities of late-type stars is difficult because visible wavelength spectra of their cool atmospheres contain many overlapping absorption lines, preventing the measurement of equivalent widths. We present new methods, and improved calibrations of existing methods, to determine metallicities of late K and M dwarfs from moderate resolution (1300 -0.5, but are less useful for more metal-poor stars

    The TESS-Keck Survey. II. An Ultra-Short-Period Rocky Planet And Its Siblings Transiting The Galactic Thick-Disk Star TOI-561

    Get PDF
    We report the discovery of TOI-561, a multiplanet system in the galactic thick disk that contains a rocky, ultra-short-period planet. This bright (V = 10.2) star hosts three small transiting planets identified in photometry from the NASA TESS mission: TOI-561 b (TOI-561.02, P = 0.44 days, Rp = 1.45 ± 0.11 R⊕), c (TOI-561.01, P = 10.8 days, Rp = 2.90 ± 0.13 R⊕), and d (TOI-561.03, P = 16.3 days, Rp = 2.32 ± 0.16 R⊕). The star is chemically ([Fe/H] = −0.41 ± 0.05, [α/Fe] = +0.23 ± 0.05) and kinematically consistent with the galactic thick-disk population, making TOI-561 one of the oldest (10 ± 3 Gyr) and most metal-poor planetary systems discovered yet. We dynamically confirm planets b and c with radial velocities from the W. M. Keck Observatory High Resolution Echelle Spectrometer. Planet b has a mass and density of 3.2 ± 0.8 M⊕ and 5.5−1.6+2.0{5.5}_{-1.6}^{+2.0}g cm−3, consistent with a rocky composition. Its lower-than-average density is consistent with an iron-poor composition, although an Earth-like iron-to-silicates ratio is not ruled out. Planet c is 7.0 ± 2.3 M⊕ and 1.6 ± 0.6 g cm−3, consistent with an interior rocky core overlaid with a low-mass volatile envelope. Several attributes of the photometry for planet d (which we did not detect dynamically) complicate the analysis, but we vet the planet with high-contrast imaging, ground-based photometric follow-up, and radial velocities. TOI-561 b is the first rocky world around a galactic thick-disk star confirmed with radial velocities and one of the best rocky planets for thermal emission studies

    M2K. II. A triple-planet system orbiting HIP 57274

    Get PDF
    Doppler observations from Keck Observatory have revealed a triple-planet system orbiting the nearby K4V star, HIP 57274. The inner planet, HIP 57274b, is a super-Earth with Msin i = 11.6 M ⊕ (0.036M Jup), an orbital period of 8.135 0.004 days, and slightly eccentric orbit e = 0.19 0.1. We calculate a transit probability of 6.5% for the inner planet. The second planet has Msin i = 0.4M Jup with an orbital period of 32.0 0.02 days in a nearly circular orbit (e = 0.05 0.03). The third planet has Msin i = 0.53M Jup with an orbital period of 432 8 days (1.18 years) and an eccentricity e = 0.23 0.03. This discovery adds to the number of super-Earth mass planets with M sin i < 12 M ⊕ that have been detected with Doppler surveys. We find that 56% 18% of super-Earths are members of multi-planet systems. This is certainly a lower limit because of observational detectability limits, yet significantly higher than the fraction of Jupiter mass exoplanets, 20% 8%, that are members of Doppler-detected, multi-planet systems

    The TESS-Keck survey. II. An ultra-short-period rocky planet and its siblings transiting the galactic thick-disk star TOI-561

    Get PDF
    We report the discovery of TOI-561, a multiplanet system in the galactic thick disk that contains a rocky, ultrashort- period planet. This bright (V = 10.2) star hosts three small transiting planets identified in photometry from the NASA TESS mission: TOI-561 b (TOI-561.02, P = 0.44 days, Rp = 1.45 ± 0.11 R⊕), c (TOI-561.01, P = 10.8 days, Rp = 2.90 ± 0.13 R⊕), and d (TOI-561.03, P = 16.3 days, Rp = 2.32 ± 0.16 R⊕). The star is chemically ([Fe/ H] = -0.41 ± 0.05, [a/Fe]=+0.23 ± 0.05) and kinematically consistent with the galactic thick-disk population, making TOI-561 one of the oldest (10 ± 3 Gyr) and most metal-poor planetary systems discovered yet. We dynamically confirm planets b and c with radial velocities from the W. M. Keck Observatory High Resolution Echelle Spectrometer. Planet b has a mass and density of 3.2 ± 0.8M⊕ and 5.5+2.0-1.6g cm-3, consistent with a rocky composition. Its lower-than-average density is consistent with an iron-poor composition, although an Earth-like iron-to-silicates ratio is not ruled out. Planet c is 7.0 ± 2.3M⊕ and 1.6 ± 0.6 g cm-3, consistent with an interior rocky core overlaid with a low-mass volatile envelope. Several attributes of the photometry for planet d (which we did not detect dynamically) complicate the analysis, but we vet the planet with high-contrast imaging, groundbased photometric follow-up, and radial velocities. TOI-561 b is the first rocky world around a galactic thick-disk star confirmed with radial velocities and one of the best rocky planets for thermal emission studies

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes

    The Influence of Number and Timing of Pregnancies on Breast Cancer Risk for Women With BRCA1 or BRCA2 Mutations

    Get PDF
    Background: Full-term pregnancy (FTP) is associated with a reduced breast cancer (BC) risk over time, but women are at increased BC risk in the immediate years following an FTP. No large prospective studies, however, have examined whether the number and timing of pregnancies are associated with BC risk for BRCA1 and BRCA2 mutation carriers. Methods: Using weighted and time-varying Cox proportional hazards models, we investigated whether reproductive events are associated with BC risk for mutation carriers using a retrospective cohort (5707 BRCA1 and 3525 BRCA2 mutation carriers) and a prospective cohort (2276 BRCA1 and 1610 BRCA2 mutation carriers), separately for each cohort and the combined prospective and retrospective cohort. Results: For BRCA1 mutation carriers, there was no overall association with parity compared with nulliparity (combined hazard ratio [HRc] ¼ 0.99, 95% confidence interval [CI] ¼ 0.83 to 1.18). Relative to being uniparous, an increased number of FTPs was associated with decreased BC risk (HRc¼ 0.79, 95% CI ¼ 0.69 to 0.91; HRc¼ 0.70, 95% CI ¼ 0.59 to 0.82; HRc¼ 0.50, 95% CI ¼ 0.40 to 0.63, for 2, 3, and 4 FTPs, respectively, Ptrend < .0001) and increasing duration of breastfeeding was associated with decreased BC risk (combined cohort Ptrend ¼ .0003). Relative to being nulliparous, uniparous BRCA1 mutation carriers were at increased BC risk in the prospective analysis (prospective hazard ration [HRp] ¼ 1.69, 95% CI ¼ 1.09 to 2.62). For BRCA2 mutation carriers, being parous was associated with a 30% increase in BC risk (HRc ¼ 1.33, 95% CI ¼ 1.05 to 1.69), and there was no apparent decrease in risk associated with multiparity except for having at least 4 FTPs vs. 1 FTP (HRc¼ 0.72, 95% CI ¼ 0.54 to 0.98). Conclusions: These findings suggest differential associations with parity between BRCA1 and BRCA2 mutation carriers with higher risk for uniparous BRCA1 carriers and parous BRCA2 carriers

    Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference

    Get PDF
    The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we introduce a machine-learning technique\u2014Subtype and Stage Inference (SuStaIn)\u2014able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn identifies genotypes from imaging alone, validating its ability to identify subtypes; further the technique reveals within-genotype heterogeneity. In Alzheimer\u2019s disease, SuStaIn uncovers three subtypes, uniquely characterising their temporal complexity. SuStaIn provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype (p = 7.18 7 10 124 ) or temporal stage (p = 3.96 7 10 125 ). SuStaIn offers new promise for enabling disease subtype discovery and precision medicine

    A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers

    Get PDF
    Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10−8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers
    • …
    corecore