853 research outputs found
Feasibility of simultaneous intracranial EEG-fMRI in humans: a safety study
In epilepsy patients who have electrodes implanted in their brains as part of their pre-surgical assessment, simultaneous intracranial EEG and fMRI (icEEG-fMRI) may provide important localising information and improve understanding of the underlying neuropathology. However, patient safety during icEEG-fMRI has not been addressed.
Here the potential health hazards associated with icEEG-fMRI were evaluated theoretically and the main risks identified as: mechanical forces on electrodes from transient magnetic effects, tissue heating due to interaction with the pulsed RF fields and tissue stimulation due to interactions with the switched magnetic gradient fields. These potential hazards were examined experimentally in vitro on a Siemens 3 T Trio, 1.5 T Avanto and a GE 3 T Signa Excite scanner using a Brain Products MR compatible EEG system.
No electrode flexion was observed. Temperature measurements demonstrated that heating well above guideline limits can occur. However heating could be kept within safe limits (< 1.0 °C) by using a head transmit RF coil, ensuring EEG cable placement to exit the RF coil along its central z-axis, using specific EEG cable lengths and limiting MRI sequence specific absorption rates (SARs). We found that the risk of tissue damage due to RF-induced heating is low provided implant and scanner specific SAR limits are observed with a safety margin used to account for uncertainties (e.g. in scanner-reported SAR). The observed scanner gradient switching induced current (0.08 mA) and charge density (0.2 μC/cm2) were well within safety limits (0.5 mA and 30 μC/cm2, respectively). Site-specific testing and a conservative approach to safety are required to avoid the risk of adverse events
Back-flow ripples in troughs downstream of unit bars: Formation, preservation and value for interpreting flow conditions
Back-flow ripples are bedforms created within the lee-side eddy of a larger bedform with migration directions opposed or oblique to that of the host bedform. In the flume experiments described in this article, back-flow ripples formed in the trough downstream of a unit bar and changed with mean flow velocity; varying from small incipient back-flow ripples at low velocities, to well-formed back-flow ripples with greater velocity, to rapidly migrating transient back-flow ripples formed at the greatest velocities tested. In these experiments back-flow ripples formed at much lower mean back-flow velocities than predicted from previously published descriptions. This lower threshold mean back-flow velocity is attributed to the pattern of velocity variation within the lee-side eddy of the host bedform. The back-flow velocity variations are attributed to vortex shedding from the separation zone, wake flapping and increases in the size of, and turbulent intensity within, the flow separation eddy controlled by the passage of superimposed bedforms approaching the crest of the bar. Short duration high velocity packets, whatever their cause, may form back-flow ripples if they exceed the minimum bed shear stress for ripple generation for long enough or, if much faster, may wash them out. Variation in back-flow ripple cross-lamination has been observed in the rock record and, by comparison with flume observations, the preserved back-flow ripple morphology may be useful for interpreting formative flow and sediment transport dynamics
Targeting Conservation Investments in Heterogeneous Landscapes: A distance function approach and application to watershed management
To achieve a given level of an environmental amenity at least cost, decision-makers must integrate information about spatially variable biophysical and economic conditions. Although the biophysical attributes that contribute to supplying an environmental amenity are often known, the way in which these attributes interact to produce the amenity is often unknown. Given the difficulty in converting multiple attributes into a unidimensional physical measure of an environmental amenity (e.g., habitat quality), analyses in the academic literature tend to use a single biophysical attribute as a proxy for the environmental amenity (e.g., species richness). A narrow focus on a single attribute, however, fails to consider the full range of biophysical attributes that are critical to the supply of an environmental amenity. Drawing on the production efficiency literature, we introduce an alternative conservation targeting approach that relies on distance functions to cost-efficiently allocate conservation funds across a spatially heterogeneous landscape. An approach based on distance functions has the advantage of not requiring a parametric specification of the amenity function (or cost function), but rather only requiring that the decision-maker identify important biophysical and economic attributes. We apply the distance-function approach empirically to an increasingly common, but little studied, conservation initiative: conservation contracting for water quality objectives. The contract portfolios derived from the distance-function application have many desirable properties, including intuitive appeal, robust performance across plausible parametric amenity measures, and the generation of ranking measures that can be easily used by field practitioners in complex decision-making environments that cannot be completely modeled. Working Paper # 2002-01
Bovine Tuberculosis in Britain and Ireland – A Perfect Storm? the Confluence of Potential Ecological and Epidemiological Impediments to Controlling a Chronic Infectious Disease
Publication history: Accepted - 3 May 2018; Published online - 5 June 2018Successful eradication schemes for bovine tuberculosis (bTB) have been implemented
in a number of European and other countries over the last 50 years. However, the
islands of Britain and Ireland remain a significant aberration to this trend, with the recent
exception of Scotland. Why have eradication schemes failed within these countries, while
apparently similar programs have been successful elsewhere? While significant socioeconomic and political factors have been discussed elsewhere as key determinants of
disease eradication, here we review some of the potential ecological and epidemiological
constraints that are present in these islands relative to other parts of Europe. We argue
that the convergence of these potential factors may interact additively to diminish the
potential of the present control programs to achieve eradication. Issues identified include
heterogeneity of diagnostic testing approaches, the presence of an abundant wildlife
reservoir of infection and the challenge of sustainably managing this risk effectively;
the nature, size, density and network structure of cattle farming; potential effects of
Mycobacterium bovis strain heterogeneity on disease transmission dynamics; possible
impacts of concurrent endemic infections on the disclosure of truly infected animals;
climatological differences and change coupled with environmental contamination. We
further argue that control and eradication of this complex disease may benefit from an
ecosystem level approach to management. We hope that this perspective can stimulate a
new conversation about the many factors potentially impacting bTB eradication schemes
in Britain and Ireland and possibly stimulate new research in the areas identified.Authors' work is funded by the Department of Agriculture, Environment and Rural Affairs, Northern Ireland (DAERA-NI
Clouds, solar irradiance and mean surface temperature over the last century
The inter-relation of clouds, solar irradiance and surface temperature is
complex and subject to different interpretations. Here, we continue our recent
work, which related mainly to the period from 1960 to the present, back to 1900
with further, but less detailed, analysis of the last 1000 years. The last 20
years is examined especially. Attention is given to the mean surface
temperature, solar irradiance correlation, which appears to be present (with
decadal smoothing) with a 22-year period; it is stronger than the 11-year cycle
correlation with one year resolution. UV in the solar radiation is a likely
cause. Cloud data are taken from synoptic observations back to 1952 and, again,
there appears to be a correlation - with opposite phase for high and low clouds
- at the 20-30y level. Particular attention is devoted to answering the
question, 'what fraction of the observed increase in mean Global temperature
(~0.7^oC) can be attributed to solar, as distinct from man-made, effects?' We
conclude that a best estimate is 'essentially' all from 1900 to 1956 and <14%
from 1956 to the present.Comment: 10 pages, 6 figures, accepted by Journal of Atmospheric and
Solar-Terrestrial Physic
Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations
We present a non-oxidative production route to few layer graphene via the electrochemical intercalation of tetraalkylammonium cations into pristine graphite. Two forms of graphite have been studied as the source material with each yielding a slightly different result. Highly orientated pyrolytic graphite (HOPG) offers greater advantages in terms of the exfoliate size but the source electrode set up introduces difficulties to the procedure and requires the use of sonication. Using a graphite rod electrode, few layer graphene flakes (2 nm thickness) are formed directly although the flake diameters from this source are typically small (ca. 100–200 nm). Significantly, for a solvent based route, the graphite rod does not require ultrasonication or any secondary physical processing of the resulting dispersion. Flakes have been characterized using Raman spectroscopy, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS)
Spin-1/2 frustrated antiferromagnet on a spatially anisotopic square lattice: contribution of exact diagonalizations
The phase diagram of a spin-1/2 model is investigated by means of
exact diagonalizations on finite samples. This model is a generalization of the
model on the square lattice with two different nearest-neighbor
couplings and may be also viewed as an array of coupled Heisenberg
chains. The results suggest that the resonnating valence bond state predicted
by Nersesyan and Tsvelik [Phys. Rev. B {\bf 67}, 024422 (2003)] for is realized and extends beyond the limit of small interchain coupling
along a curve nearly coincident with the line where the energy per spin is
maximum. This line is likely bordered on both side by a columnar dimer long
range order. This columnar order could extends for which correspond
to the model.Comment: 14 pages, 21 figures, final versio
Special relativity constraints on the effective constituent theory of hybrids
We consider a simplified constituent model for relativistic
strong-interaction decays of hybrid mesons. The model is constructed using
rules of renormalization group procedure for effective particles in light-front
quantum field theory, which enables us to introduce low-energy phenomenological
parameters. Boost covariance is kinematical and special relativity constraints
are reduced to the requirements of rotational symmetry. For a hybrid meson
decaying into two mesons through dissociation of a constituent gluon into a
quark-anti-quark pair, the simplified constituent model leads to a rotationally
symmetric decay amplitude if the hybrid meson state is made of a constituent
gluon and a quark-anti-quark pair of size several times smaller than the
distance between the gluon and the pair, as if the pair originated from one
gluon in a gluonium state in the same effective theory.Comment: 11 pages, 5 figure
Variation in Mycobacterium bovis genetic richness suggests that inwards cattle movements are a more important source of infection in beef herds than in dairy herds
Publication history: Accepted - 25 June 2019; Published online - July 2019Background
We used genetic Multi-Locus VNTR Analysis (MLVA) data gathered from surveillance efforts to better understand the ongoing bovine tuberculosis (bTB) epidemic in Northern Irish cattle herds. We modelled the factors associated with Mycobacterium bovis MLVA genotype richness at three analytical scales; breakdown level, herd level, and patch level, and compared the results between dairy and non-dairy production types.
Results
In 83% of breakdowns and in 63% of herds, a single MLVA genotype was isolated. Five or more MLVA genotypes were found in less than 3 % of herds. Herd size and the total number of reactors were important explanatory variables, suggesting that increasing MLVA genotype richness was positively related to increases in the number of host animals. Despite their smaller relative size, however, the highest MLVA genotype richness values were observed in non-dairy herds. Increasing inwards cattle movements were important positive predictors of MLVA genotype richness, but mainly in non-dairy settings.
Conclusions
The principal finding is that low MLVA genotype richness indicates that small-scale epidemics, e.g. wildlife, contiguous farms, and within-herd recrudescence, are important routes of M. bovis infection in cattle herds. We hypothesise that these mechanisms will maintain, but may not explicitly increase, MLVA genotype richness. The presence of elevated MLVA richness is relatively rare and likely indicates beef fattening enterprises, which purchase cattle from over long distances. Cattle movements were furthermore an important predictor of MLVA genotype richness in non-dairy herds, but not in dairy herds; this may represent reduced cattle purchasing levels in dairy enterprises, compared to beef. These observations allude to the relative contribution of different routes of bTB infection between production types; we posit that infection associated with local factors may be more evident in dairy herds than beef herds, however in beef herds, inwards movements offer additional opportunities for introducing M. bovis into the herd
- …