7 research outputs found

    Problem of a quantum particle in a random potential on a line revisited

    Full text link
    The density of states for a particle moving in a random potential with a Gaussian correlator is calculated exactly using the functional integral technique. It is achieved by expressing the functional degrees of freedom in terms of the spectral variables and the parameters of isospectral transformations of the potential. These transformations are given explicitly by the flows of the Korteweg-de Vries hierarchy which deform the potential leaving all its spectral properties invariant. Making use of conservation laws reduces the initial Feynman integral to a combination of quadratures which can be readily calculated. Different formulations of the problem are analyzed.Comment: 11 pages, RevTex, preprint ANU-RSPhySE-20994 (comment added

    Stability of condensate in superconductors

    Full text link
    According to the BCS theory the superconducting condensate develops in a single quantum mode and no Cooper pairs out of the condensate are assumed. Here we discuss a mechanism by which the successful mode inhibits condensation in neighboring modes and suppresses a creation of noncondensed Cooper pairs. It is shown that condensed and noncondensed Cooper pairs are separated by an energy gap which is smaller than the superconducting gap but large enough to prevent nucleation in all other modes and to eliminate effects of noncondensed Cooper pairs on properties of superconductors. Our result thus justifies basic assumptions of the BCS theory and confirms that the BCS condensate is stable with respect to two-particle excitations
    corecore