7 research outputs found

    Cosmic Strings on the Lattice

    Full text link
    We develop a formalism for the quantization of topologically stable excitations in the 4-dimensional abelian lattice gauge theory. The excitations are global and local (Abrikosov-Nielsen-Olesen) strings and monopoles. The operators of creation and annihilation of string states are constructed; the string Green functions are represented as a path integral over random surfaces. Topological excitations play an important role in the early universe. In the broken symmetry phase of the U(1)U(1) spin model, closed global cosmic strings arise, while in the Higgs phase of the noncompact gauge-Higgs model, local cosmic strings are present. The compact gauge-Higgs model also involves monopoles. Then the strings can break if their ends are capped by monopoles. The topology of the Euclidean string world sheets are studied by numerical simulations.Comment: 4 pages LaTex (espcrc2.sty), LATTICE'92 contribution, ITEP(1992

    Insight into nucleon structure from generalized parton distributions

    Full text link
    The lowest three moments of generalized parton distributions are calculated in full QCD and provide new insight into the behavior of nucleon electromagnetic form factors, the origin of the nucleon spin, and the transverse structure of the nucleon.Comment: 3 pages, Lattice2003(Theoretical developments

    Moments of nucleon spin-dependent generalized parton distributions

    Full text link
    We present a lattice measurement of the first two moments of the spin-dependent GPD H-tilde(x,xi,t). From these we obtain the axial coupling constant and the second moment of the spin-dependent forward parton distribution. The measurements are done in full QCD using Wilson fermions. In addition, we also present results from a first exploratory study of full QCD using Asqtad sea and domain-wall valence fermions.Comment: Lattice2003(Theory), 3 pages, 3 figures, to appear in the Proceedings of Lattice 200

    Nucleon Structure from Lattice QCD Using a Nearly Physical Pion Mass

    Get PDF
    We report the first Lattice QCD calculation using the almost physical pion mass mpi=149 MeV that agrees with experiment for four fundamental isovector observables characterizing the gross structure of the nucleon: the Dirac and Pauli radii, the magnetic moment, and the quark momentum fraction. The key to this success is the combination of using a nearly physical pion mass and excluding the contributions of excited states. An analogous calculation of the nucleon axial charge governing beta decay has inconsistencies indicating a source of bias at low pion masses not present for the other observables and yields a result that disagrees with experiment.Comment: journal version; 15 pages, 6 figure

    Numerical study of duality and universality in a frozen superconductor

    Full text link
    The three-dimensional integer-valued lattice gauge theory, which is also known as a "frozen superconductor," can be obtained as a certain limit of the Ginzburg-Landau theory of superconductivity, and is believed to be in the same universality class. It is also exactly dual to the three-dimensional XY model. We use this duality to demonstrate the practicality of recently developed methods for studying topological defects, and investigate the critical behavior of the phase transition using numerical Monte Carlo simulations of both theories. On the gauge theory side, we concentrate on the vortex tension and the penetration depth, which map onto the correlation lengths of the order parameter and the Noether current in the XY model, respectively. We show how these quantities behave near the critical point, and that the penetration depth exhibits critical scaling only very close to the transition point. This may explain the failure of superconductor experiments to see the inverted XY model scaling.Comment: 17 pages, 18 figures. Updated to match the version published in PRB (http://link.aps.org/abstract/PRB/v67/e014525) on 27 Jan 200
    corecore