106 research outputs found

    A weakly coupled semiconductor superlattice as a harmonic hypersonic-electrical transducer

    Get PDF
    We study experimentally and theoretically the effects of high-frequency strain pulse trains on the charge transport in a weakly coupled semiconductor superlattice. In a frequency range of the order of 100 GHz such excitation may be considered as single harmonic hypersonic excitation. While travelling along the axis of the SL, the hypersonic acoustic wavepacket affects the electron tunnelling, and thus governs the electrical current through the device. We reveal how the change of current depends on the parameters of the hypersonic excitation and on the bias applied to the superlattice. We have found that the changes in the transport properties of the superlattices caused by the acoustic excitation can be largely explained using the current-voltage relation of the unperturbed system. Our experimental measurements show multiple peaks in the dependence of the transferred charge on the repetition rate of the strain pulses in the train. We demonstrate that these resonances can be understood in terms of the spectrum of the applied acoustic perturbation after taking into account the multiple reflections in the metal film serving as a generator of hypersonic excitation. Our findings suggest an application of the semiconductor superlattice as a hypersonic-electrical transducer, which can be used in various microwave devices

    Information driven evaluation of data hiding algorithms

    Get PDF
    Abstract. Privacy is one of the most important properties an information system must satisfy. A relatively new trend shows that classical access control techniques are not sufficient to guarantee privacy when datamining techniques are used. Privacy Preserving Data Mining (PPDM) algorithms have been recently introduced with the aim of modifying the database in such a way to prevent the discovery of sensible information. Due to the large amount of possible techniques that can be used to achieve this goal, it is necessary to provide some standard evaluation metrics to determine the best algorithms for a specific application or context. Currently, however, there is no common set of parameters that can be used for this purpose. This paper explores the problem of PPDM algorithm evaluation, starting from the key goal of preserving of data quality. To achieve such goal, we propose a formal definition of data quality specifically tailored for use in the context of PPDM algorithms, a set of evaluation parameters and an evaluation algorithm. The resulting evaluation core process is then presented as a part of a more general three step evaluation framework, taking also into account other aspects of the algorithm evaluation such as efficiency, scalability and level of privacy.

    Ultrafast insulator-metal transition in VO2 nanostructures assisted by picosecond strain pulses

    Get PDF
    Strain engineering is a powerful technology that exploits the stationary external or internal stress of specific spatial distribution for controlling the fundamental properties of condensed materials and nanostructures. This advanced technique modulates in space the carrier density and mobility, the optical absorption, and in strongly correlated systems, the phase, e.g., insulator-metal or ferromagnetic-paramagnetic. However, while successfully accessing nanometer-length scales, strain engineering is yet to be brought down to ultrafast time scales allowing strain-assisted control of the state of matter at THz frequencies. We demonstrate control of an optically-driven insulator-to-metal phase transition by a picosecond strain pulse, which paves the way to ultrafast strain engineering in nanostructures with phase transitions. This is realized by simultaneous excitation of VO2 nanohillocks by a 170-fs laser and picosecond strain pulses finely timed with each other. By monitoring the transient optical reflectivity of the VO2, we show that strain pulses, depending on the sign of the strain at the moment of optical excitation, increase or decrease the fraction of VO2 that undergoes an ultrafast phase transition. A transient strain of moderate amplitude of approximately 0.1% applied during ultrafast photo-induced nonthermal transition changes the fraction of VO2 in the laser-induced phase by approximately 1%. In contrast, if applied after the photoexcitation when the phase transformations of the material are governed by thermal processes, a transient strain of the same amplitude produces no measurable effect on the phase state

    A unifying framework for seed sensitivity and its application to subset seeds

    Get PDF
    We propose a general approach to compute the seed sensitivity, that can be applied to different definitions of seeds. It treats separately three components of the seed sensitivity problem -- a set of target alignments, an associated probability distribution, and a seed model -- that are specified by distinct finite automata. The approach is then applied to a new concept of subset seeds for which we propose an efficient automaton construction. Experimental results confirm that sensitive subset seeds can be efficiently designed using our approach, and can then be used in similarity search producing better results than ordinary spaced seeds

    Semiconductor charge transport driven by a picosecond strain pulse

    Get PDF
    We demonstrate that a picosecond strain pulse can be used to drive an electric current through both thin-film epilayer and heterostructure semiconductor crystals in the absence of an external electric field. By measuring the transient current pulses, we are able to clearly distinguish the effects of the coherent and incoherent components of the acoustic packet. The properties of the strain induced signal suggest a technique for exciting picosecond current pulses, which may be used to probe semiconductor devices

    Terahertz sound lasers (sasers): recent developments and applications

    Get PDF

    Intermittent applied mechanical loading induces subchondral bone thickening that may be intensified locally by contiguous articular cartilage lesions

    Get PDF
    Objectives: Changes in subchondral bone (SCB) and cross-talk with articular cartilage (AC) have been linked to osteoarthritis (OA). Using micro-computed tomography (micro-CT) this study: (1) examines changes in SCB architecture in a non-invasive loading mouse model in which focal AC lesions are induced selectively in the lateral femur, and (2) determines any modifications in the contralateral knee, linked to changes in gait, which might complicate use of this limb as an internal control. Methods: Right knee joints of CBA mice were loaded: once with 2weeks of habitual use (n=7), for 2weeks (n=8) or for 5weeks (n=5). Both left (contralateral) and right (loaded) knees were micro-CT scanned and the SCB and trabecular bone analysed. Gait analysis was also performed. Results: These analyses showed a significant increase in SCB thickness in the lateral compartments in joints loaded for 5weeks, which was most marked in the lateral femur; the contralateral non-loaded knee also showed transient SCB thickening (loaded once and repetitively). Epiphyseal trabecular bone BV/TV and trabecular thickness were also increased in the lateral compartments after 5 weeks of loading, and in all joint compartments in the contralateral knee. Gait analysis showed that applied loading only affected gait in the contralateral himd-limb in all groups of mice from the second week after the first loading episode. Conclusions: These data indicate a spatial link between SCB thickening and AC lesions following mechanical trauma, and the clear limitations associated with the use of contralateral joints as controls in such OA models, and perhaps in OA diagnosis

    Real-world treatment patterns and outcomes for patients with advanced melanoma treated with immunotherapy or targeted therapy

    Get PDF
    Objective: To identify real-world patterns of first line treatment, treatment sequence and outcomes for older adults diagnosed with advanced melanoma who received immunotherapy or targeted therapy. Methods: The study population included older adults (ages 65+) diagnosed with unresectable or metastatic melanoma between 2012 and 2017 and who received first line immunotherapy or targeted therapy. Using the linked surveillance, epidemiology, and end results-medicare data, we described patterns of first line treatment and treatment sequence through 2018. We used descriptive statistics to report patient and provider characteristics by first line treatment receipt and changes in first line therapy use over calendar time. We also described overall survival (OS) and time to treatment failure (TTF) by first line treatment using the Kaplan–Meier method. For patterns of treatment sequence, we reported commonly observed treatment switch patterns by treatment sub-category and calendar year. Results: The analyses included 584 patients (mean age = 76.3 years). A majority (n = 502) received first line immunotherapy. There was a sustained increase in immunotherapy uptake, most notably from 2015 to 2016. The estimated median OS and TTF were longer with first line immunotherapy than with targeted therapy. Individuals treated with CTLA-4 + PD-1 inhibitors had the longest median OS (28.4 months). The most common treatment switch pattern was from a first line CTLA-4 inhibitor to a second line PD-1 inhibitor. Conclusions: Our findings inform understanding of treatment patterns of currently used immunotherapies and targeted therapies in older adults with advanced melanoma. Immunotherapy use has increased steadily with PD-1 inhibitors becoming a dominant treatment option since 2015

    Gravitational stability and dynamical overheating of stellar disks of galaxies

    Full text link
    We use the marginal stability condition for galactic disks and the stellar velocity dispersion data published by different authors to place upper limits on the disk local surface density at two radial scalelengths R=2hR=2h. Extrapolating these estimates, we constrain the total mass of the disks and compare these estimates to those based on the photometry and color of stellar populations. The comparison reveals that the stellar disks of most of spiral galaxies in our sample cannot be substantially overheated and are therefore unlikely to have experienced a significant merging event in their history. The same conclusion applies to some, but not all of the S0 galaxies we consider. However, a substantial part of the early type galaxies do show the stellar velocity dispersion well in excess of the gravitational stability threshold suggesting a major merger event in the past. We find dynamically overheated disks among both seemingly isolated galaxies and those forming pairs. The ratio of the marginal stability disk mass estimate to the total galaxy mass within four radial scalelengths remains within a range of 0.4---0.8. We see no evidence for a noticeable running of this ratio with either the morphological type or color index.Comment: 25 pages, 5 figures, accepted to Astronomy Letter

    Best Practices and Joint Calling of the HumanExome BeadChip: The CHARGE Consortium

    Get PDF
    Genotyping arrays are a cost effective approach when typing previously-identified genetic polymorphisms in large numbers of samples. One limitation of genotyping arrays with rare variants (e.g., minor allele frequency [MAF] <0.01) is the difficulty that automated clustering algorithms have to accurately detect and assign genotype calls. Combining intensity data from large numbers of samples may increase the ability to accurately call the genotypes of rare variants. Approximately 62,000 ethnically diverse samples from eleve
    • …
    corecore