636 research outputs found

    Formation of diffusion zones in coated Ni-Al-X ternary alloys and Ni-based superalloys

    Get PDF
    Coatings are an essential part of the materials system to protect the turbine blades from oxidation and corrosive attack during service. Inter-diffusion of alloying elements between a turbine blade substrate and their coatings is a potential concern for coated turbine blades at ever increasing operating temperatures because this can cause the formation of undesirable Secondary Reaction Zones (SRZs), which may degrade the mechanical properties of coated Ni-based superalloys. Understanding the effects of each element on the SRZ formation is essential in order to understand both the mechanism and inter-diffusion behaviour between coatings and substrates. In this research, a number of simpler aluminized ternary Ni-Al-X (where X is Co, Cr, Re, Ru or Ta) alloys were investigated in order to elucidate the separate effects of each element on the microstructural evolution, especially at the coating/substrate interface. The aluminized ternary alloys developed distinctive diffusion zones, depending on the third alloy element, ‘X’. Specifically, it has been found that both Ni-Al-Re and Ni-Al-Ta alloys developed a continuous SRZ-like diffusion layer. This diffusion zone persisted in the Ni-Al-Re alloys after high temperature exposure, indicating that Re has a stronger effect on SRZ formation than Ta

    Description of inclusive scattering of 4.045 GeV electrons from D

    Get PDF
    We exploit a relationship between the Structure Functions of nucleons, the physical deuteron and of a deuteron, composed of point-nucleons to compute angular distributions of inclusive cross sections of 4.05 GeV electrons. We report general agreement with data and interpret the remaining discrepancies. We discuss the potential of the data for information on neutron structure functions Fkn(x,Q2)F_k^n(x,Q^2) and the static form factor GMn(Q2)G_M^n(Q^2).Comment: 9 pages,1 Fig., PS fil

    GRS computation of deep inelastic electron scattering on 4He

    Get PDF
    We compute cross sections for inclusive scattering of high energy electrons on 4He, based on the two lowest orders of the Gersch-Rodriguez-Smith (GRS) series. The required one- and two-particle density matrices are obtained from non-relativistic 4He wave functions using realistic models for the nucleon-nucleon and three-nucleon interaction. Predictions for E=3.6 GeV agree well with the NE3 SLAC-Virginia data.Comment: 18 pages, 7 figures, submitted to PR

    Beyond the binary collision approximation for the large-qq response of liquid 4^4He

    Full text link
    We discuss corrections to the linear response of a many-body system beyond the binary collision approximation. We first derive for smooth pair interactions an exact expression of the response ∝1/q2\propto 1/q^2, considerably simplifying existing forms and present also the generalization for interactions with a strong, short-range repulsion. We then apply the latter to the case of liquid 4^4He. We display the numerical influence of the 1/q21/q^2 correction around the quasi-elastic peak and in the low-intensity wings of the response, far from that peak. Finally we resolve an apparent contradiction in previous discussions around the fourth order cumulant expansion coefficient. Our results prove that the large-qq response of liquid 4^4He can be accurately understood on the basis of a dynamical theory.Comment: 19 p. Figs. available on reques

    Confinement and scaling in deep inelastic scattering

    Full text link
    We show that parton confinement in the final state generates large 1/Q21/Q^2 corrections to Bjorken scaling, thus leaving less room for the logarithmic corrections. In particular, the xx-scaling violations at large xx are entirely described in terms of power corrections. For treatment of these non-perturbative effects, we derive a new expansion in powers of 1/Q21/Q^2 for the structure function that is free of infra-red singularities and which reduces corrections to the leading term. The leading term represents scattering from an off-mass-shell parton, which keeps the same virtual mass in the final state. It is found that this quasi-free term is a function of a new variable xˉ\bar x, which coincides with the Bjorken variable xx for Q2→∞Q^2\to\infty. The two variables are very different, however, at finite Q2Q^2. In particular, the variable xˉ\bar x depends on the invariant mass of the spectator particles. Analysis of the data at large xx shows excellent scaling in the variable xˉ\bar x, and determines the value of the diquark mass to be close to zero. xˉ\bar x-scaling allows us to extract the structure function near the elastic threshold. It is found to behave as F2∌(1−x)3.7F_2\sim (1-x)^{3.7}. Predictions for the structure functions based on xˉ\bar x-scaling are made.Comment: Discussion of target mass corrections is added. Accepted for publication in Phys. Rev.

    On an asymptotic estimate of the nn-loop correction in perturbative QCD

    Full text link
    A recently proposed method of estimating the asymptotic behaviour of QCD perturbation theory coefficients is critically reviewed and shown to contain numerous invalid mathematical operations and unsubstantiated assumptions. We discuss in detail why this procedure, based solely on renormalization group (RG) considerations and analyticity constraints, cannot lead to such estimates. We stress the importance of correct renormalization scheme (RS) dependence of any meaningful asymptotic estimate and argue that the unambiguous summation of QCD perturbation expansions for physical quantities requires information from outside of perturbation theory itself.Comment: PRA-HEP-92/17, Latex, 20 pages of text plus 5 figures contained in 5 separate PS files. Four of them (corresponding to Figs.1,2,3,5) are appended at the end of this file, the (somewhat larger one) corresponding to Fig.4 can be obtained from any of the mentioned E-mail addresses upon request. E-mail connections: J. Chyla - [email protected]) or h1kchy@dhhdesy3 P. Kolar - [email protected]

    Final state effects on superfluid 4^{\bf 4}He in the deep inelastic regime

    Get PDF
    A study of Final State Effects (FSE) on the dynamic structure function of superfluid 4^4He in the Gersch--Rodriguez formalism is presented. The main ingredients needed in the calculation are the momentum distribution and the semidiagonal two--body density matrix. The influence of these ground state quantities on the FSE is analyzed. A variational form of ρ2\rho_2 is used, even though simpler forms turn out to give accurate results if properly chosen. Comparison to the experimental response at high momentum transfer is performed. The predicted response is quite sensitive to slight variations on the value of the condensate fraction, the best agreement with experiment being obtained with n0=0.082n_0=0.082. Sum rules of the FSE broadening function are also derived and commented. Finally, it is shown that Gersch--Rodriguez theory produces results as accurate as those coming from other more recent FSE theories.Comment: 20 pages, RevTex 3.0, 11 figures available upon request, to be appear in Phys. Rev.

    Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation: Exact time-dependent solutions

    Full text link
    We consider the d=1d=1 nonlinear Fokker-Planck-like equation with fractional derivatives ∂∂tP(x,t)=D∂γ∂xÎł[P(x,t)]Îœ\frac{\partial}{\partial t}P(x,t)=D \frac{\partial^{\gamma}}{\partial x^{\gamma}}[P(x,t) ]^{\nu}. Exact time-dependent solutions are found for Îœ=2−γ1+Îł \nu = \frac{2-\gamma}{1+ \gamma} (−∞<γ≀2-\infty<\gamma \leq 2). By considering the long-distance {\it asymptotic} behavior of these solutions, a connection is established, namely q=Îł+3Îł+1q=\frac{\gamma+3}{\gamma+1} (0<γ≀20<\gamma \le 2), with the solutions optimizing the nonextensive entropy characterized by index qq . Interestingly enough, this relation coincides with the one already known for L\'evy-like superdiffusion (i.e., Îœ=1\nu=1 and 0<γ≀20<\gamma \le 2). Finally, for (Îł,Îœ)=(2,0)(\gamma,\nu)=(2, 0) we obtain q=5/3q=5/3 which differs from the value q=2q=2 corresponding to the Îł=2\gamma=2 solutions available in the literature (Îœ<1\nu<1 porous medium equation), thus exhibiting nonuniform convergence.Comment: 3 figure

    Development and Validation of a 28-gene Hypoxia-related Prognostic Signature for Localized Prostate Cancer.

    Get PDF
    BACKGROUND: Hypoxia is associated with a poor prognosis in prostate cancer. This work aimed to derive and validate a hypoxia-related mRNA signature for localized prostate cancer. METHOD: Hypoxia genes were identified in vitro via RNA-sequencing and combined with in vivo gene co-expression analysis to generate a signature. The signature was independently validated in eleven prostate cancer cohorts and a bladder cancer phase III randomized trial of radiotherapy alone or with carbogen and nicotinamide (CON). RESULTS: A 28-gene signature was derived. Patients with high signature scores had poorer biochemical recurrence free survivals in six of eight independent cohorts of prostatectomy-treated patients (Log rank test P \u3c .05), with borderline significances achieved in the other two (P \u3c .1). The signature also predicted biochemical recurrence in patients receiving post-prostatectomy radiotherapy (n = 130, P = .007) or definitive radiotherapy alone (n = 248, P = .035). Lastly, the signature predicted metastasis events in a pooled cohort (n = 631, P = .002). Prognostic significance remained after adjusting for clinic-pathological factors and commercially available prognostic signatures. The signature predicted benefit from hypoxia-modifying therapy in bladder cancer patients (intervention-by-signature interaction test P = .0026), where carbogen and nicotinamide was associated with improved survival only in hypoxic tumours. CONCLUSION: A 28-gene hypoxia signature has strong and independent prognostic value for prostate cancer patients

    Using multi-stakeholder causal mapping to explore priorities for infrastructure resilience to flooding

    Get PDF
    Urban resilience to natural hazards could make our cities less vulnerable to adverse weather events. However, the implementation of resilience actions is currently not effective, as mechanisms to facilitate collaboration among involved stakeholders are missing. This paper for the first time explores causal mapping as a method to disassemble major issues of urban resilience into a more manageable understanding, and thus identify key objectives, barriers and opportunities in thinking “resilient cities”. In this study, a cognitive-mapping-based workshop was held to elicit information from stakeholders in the remit of urban resilience to flooding. The statements and connections identified during the workshop led a consolidated map, analysed using the StrategyFinder software. This analysis highlighted barriers related to data availability, silo-based approaches and lack of funding; it also evidenced shared goals, such as the need to protect the built environment and minimise impact from flooding. Overall, causal mapping resulted a powerful analytical tool for improving understanding of the complex dynamics of urban resilience, identifying key variables and relationships, as well as eliciting information from stakeholders. Furthermore, this approach facilitated systems thinking, communication and collaboration. This enhanced understanding is fundamental for advancing strategies for future planning, contributing to urban sustainability and liveability
    • 

    corecore