874 research outputs found
Caves and karst-like features in Proterozoic gneiss and Cambrian granite, southern and central Sri Lanka: An introduction
There has been little study of the geology and geomorphologyof the caves and karst-like features developed in the Proterozoicgneiss and Cambrian granite of Sri Lanka. This lack of studyis surprising given that caves and rockshelters in these rockscontain significant archaeological and cultural sites. Caves andkarren, both mimicking those developed in carbonate rocks,have formed both in gneiss, which is the dominant rock type ofthe Proterozoic crust of the island and in granite. In addition tooverhangs, boulder caves, soil pipes and tectonic caves, tunnelcaves, arch caves and block breakdown caves of significant sizeare developed in siliceous rocks in Sri Lanka. While metamorphoseddolomites are interfoliated within the gneissic suite,simple removal of carbonate by solution from within the surroundingrock cannot account for all or most of the speleogenesisobserved. While spalling and breakdown are responsiblefor cave enlargement cave initiation is probably due to eitherphreatic solution of silicates and/or phantom rock processes.Speleothems and cave minerals including silicates, phosphates,gypsum, carbonates and niter are found in the caves. Activesilicate speleothems are not restricted to joints and fissures andsuggest that solution of silicates is currently occurring withinthe body of the rock in the vadose zone. While guano is thelikely source of the phosphate, sulfate and nitrate, the sourceof the calcium in the carbonates remains unclear. Caves in theintrusive and metamorphic rocks of Sri Lanka are enigmatic.They are unexpectedly similar in appearance to their carbonatekarst counterparts. Continuing research will allow them tohold a mirror to our understanding of speleogenesis, mineralizationand sedimentation in carbonate karst caves
Recommended from our members
PROCESS MODELING FOR FLUID-INTERFACE SUPPORTED RESIN PRINTING
The article details the latest design and implementation of a stereolithography (SLA)
based technique, Fluid Interface Supported Printing (FISP). The FISP technique involves
printing from a thin resin layer above a static, immiscible support fluid. The support fluid
prevents deflection of overhanging geometry by providing a buoyant force equal to that of the
gravitational force due to the minute density difference between the support fluid and cured
resin. Complex curing and shrinkage dynamics are a primary knowledge gap. A COMSOL
multiphysics simulation model was developed to simulate the curing process, including
volumetric light intensity and optimized parameters for chemical reaction kinetics. The article
presents a pathway for further enhancing and validating the simulation model.Mechanical Engineerin
N=1 Supergravity Chaotic Inflation in the Braneworld Scenario
We study a N=1 Supergravity chaotic inflationary model, in the context of the
braneworld scenario. It is shown that successful inflation and reheating
consistent with phenomenological constraints can be achieved via the new terms
in the Friedmann equation arising from brane physics. Interestingly, the model
satisfies observational bounds with sub-Planckian field values, implying that
chaotic inflation on the brane is free from the well known difficulties
associated with the presence of higher order non-renormalizable terms in the
superpotential. A bound on the mass scale of the fifth dimension, M_5 \gsim
1.3 \times 10^{-6} M_P, is obtained from the requirement that the reheating
temperature be higher than the temperature of the electroweak phase transition.Comment: 5 pages, 1 Table, Revtex
Doppler-free frequency modulation spectroscopy of atomic erbium in a hollow cathode discharge cell
The erbium atomic system is a promising candidate for an atomic Bose-Einstein
condensate of atoms with a non-vanishing orbital angular momentum ()
of the electronic ground state. In this paper we report on the frequency
stabilization of a blue external cavity diode laser system on the 400.91
laser cooling transition of atomic erbium. Doppler-free saturation spectroscopy
is applied within a hollow cathode discharge tube to the corresponding
electronic transition of several of the erbium isotopes. Using the technique of
frequency modulation spectroscopy, a zero-crossing error signal is produced to
lock the diode laser frequency on the atomic erbium resonance. The latter is
taken as a reference laser to which a second main laser system, used for laser
cooling of atomic erbium, is frequency stabilized
Indications of coherence-incoherence crossover in layered transport
For many layered metals the temperature dependence of the interlayer
resistance has a different behavior than the intralayer resistance. In order to
better understand interlayer transport we consider a concrete model which
exhibits this behavior. A small polaron model is used to illustrate how the
interlayer transport is related to the coherence of quasi-particles within the
layers. Explicit results are given for the electron spectral function,
interlayer optical conductivity and the interlayer magnetoresistance. All these
quantities have two contributions: one coherent (dominant at low temperatures)
and one incoherent (dominant at high temperatures).Comment: 6 pages, 4 figures, REVTEX
Approach to the semiconductor cavity QED in high-Q regimes with q-deformed boson
The high density Frenkel exciton which interacts with a single mode
microcavity field is dealed with in the framework of the q-deformed boson. It
is shown that the q-defomation of bosonic commutation relations is satisfied
naturally by the exciton operators when the low density limit is deviated. An
analytical expression of the physical spectrum for the exciton is given by
using of the dressed states of the cavity field and the exciton. We also give
the numerical study and compare the theoretical results with the experimental
resultsComment: 6 pages, 2 figure
Development and Validation of a 28-gene Hypoxia-related Prognostic Signature for Localized Prostate Cancer.
BACKGROUND: Hypoxia is associated with a poor prognosis in prostate cancer. This work aimed to derive and validate a hypoxia-related mRNA signature for localized prostate cancer.
METHOD: Hypoxia genes were identified in vitro via RNA-sequencing and combined with in vivo gene co-expression analysis to generate a signature. The signature was independently validated in eleven prostate cancer cohorts and a bladder cancer phase III randomized trial of radiotherapy alone or with carbogen and nicotinamide (CON).
RESULTS: A 28-gene signature was derived. Patients with high signature scores had poorer biochemical recurrence free survivals in six of eight independent cohorts of prostatectomy-treated patients (Log rank test P \u3c .05), with borderline significances achieved in the other two (P \u3c .1). The signature also predicted biochemical recurrence in patients receiving post-prostatectomy radiotherapy (n = 130, P = .007) or definitive radiotherapy alone (n = 248, P = .035). Lastly, the signature predicted metastasis events in a pooled cohort (n = 631, P = .002). Prognostic significance remained after adjusting for clinic-pathological factors and commercially available prognostic signatures. The signature predicted benefit from hypoxia-modifying therapy in bladder cancer patients (intervention-by-signature interaction test P = .0026), where carbogen and nicotinamide was associated with improved survival only in hypoxic tumours.
CONCLUSION: A 28-gene hypoxia signature has strong and independent prognostic value for prostate cancer patients
Probing neutrino properties with charged scalar lepton decays
Supersymmetry with bilinear R-parity violation provides a predictive
framework for neutrino masses and mixings in agreement with current neutrino
oscillation data. The model leads to striking signals at future colliders
through the R-parity violating decays of the lightest supersymmetric particle.
Here we study charged scalar lepton decays and demonstrate that if the scalar
tau is the LSP (i) it will decay within the detector, despite the smallness of
the neutrino masses, (ii) the relative ratio of branching ratios Br({tilde
tau}_1 --> e sum nu_i)/ Br({tilde tau}_1 --> mu sum nu_i) is predicted from the
measured solar neutrino angle, and (iii) scalar muon and scalar electron decays
will allow to test the consistency of the model. Thus, bilinear R-parity
breaking SUSY will be testable at future colliders also in the case where the
LSP is not the neutralino.Comment: 24 pages, 8 ps figs Report-no.: IFIC/02-33 and ZU-TH 11/0
Neutrino masses in R-parity violating supersymmetric models
We study neutrino masses and mixing in R-parity violating supersymmetric
models with generic soft supersymmetry breaking terms. Neutrinos acquire masses
from various sources: Tree level neutrino--neutralino mixing and loop effects
proportional to bilinear and/or trilinear R-parity violating parameters. Each
of these contributions is controlled by different parameters and have different
suppression or enhancement factors which we identified. Within an Abelian
horizontal symmetry framework these factors are related and specific
predictions can be made. We found that the main contributions to the neutrino
masses are from the tree level and the bilinear loops and that the observed
neutrino data can be accommodated once mild fine-tuning is allowed.Comment: 18 pages; minor typos corrected. To be published in Physical Review
Suppressing the and neutrino masses by a superconformal force
The idea of Nelson and Strassler to obtain a power law suppression of
parameters by a superconformal force is applied to understand the smallness of
the parameter and neutrino masses in R-parity violating supersymmetric
standard models. We find that the low-energy sector should contain at least
another pair of Higgs doublets, and that a suppression of \lsim O(10^{-13})
for the parameter and neutrino masses can be achieved generically. The
superpotential of the low-energy sector happens to possess an anomaly-free
discrete R-symmetry, either or , which naturally suppresses certain
lepton-flavor violating processes, the neutrinoless double beta decays and also
the electron electric dipole moment. We expect that the escape energy of the
superconformal sector is \lsim O(10) TeV so that this sector will be
observable at LHC. Our models can accommodate to a large mixing among neutrinos
and give the same upper bound of the lightest Higgs mass as the minimal
supersymmetric standard model.Comment: 24 page
- …