489 research outputs found

    Collective versus local measurements on two parallel or antiparallel spins

    Get PDF
    We give a complete analysis of covariant measurements on two spins. We consider the cases of two parallel and two antiparallel spins, and we consider both collective measurements on the two spins, and measurements which require only Local Quantum Operations and Classical Communication (LOCC). In all cases we obtain the optimal measurements for arbitrary fidelities. In particular we show that if the aim is determine as well as possible the direction in which the spins are pointing, it is best to carry out measurements on antiparallel spins (as already shown by Gisin and Popescu), second best to carry out measurements on parallel spins and worst to be restricted to LOCC measurements. If the the aim is to determine as well as possible a direction orthogonal to that in which the spins are pointing, it is best to carry out measurements on parallel spins, whereas measurements on antiparallel spins and LOCC measurements are both less good but equivalent.Comment: 4 pages; minor revision

    Comparison between the Cramer-Rao and the mini-max approaches in quantum channel estimation

    Full text link
    In a unified viewpoint in quantum channel estimation, we compare the Cramer-Rao and the mini-max approaches, which gives the Bayesian bound in the group covariant model. For this purpose, we introduce the local asymptotic mini-max bound, whose maximum is shown to be equal to the asymptotic limit of the mini-max bound. It is shown that the local asymptotic mini-max bound is strictly larger than the Cramer-Rao bound in the phase estimation case while the both bounds coincide when the minimum mean square error decreases with the order O(1/n). We also derive a sufficient condition for that the minimum mean square error decreases with the order O(1/n).Comment: In this revision, some unlcear parts are clarifie

    AI at the disco: Low sample frequency human activity recognition for night club experiences

    Get PDF
    Human activity recognition (HAR) has grown in popularity as sensors have become more ubiquitous. Beyond standard health applications, there exists a need for embedded low cost, low power, accurate activity sensing for entertainment experiences. We present a system and method of using a deep neural net for HAR using low-cost accelerometer-only sensor running at 0.8Hz to preserve battery power. Despite these limitations, we demonstrate an accuracy at 94.79% over 6 activity classes with an order of magnitude less data. This sensing system conserves power further by using a connectionless reading - -embedding accelerometer data in the Bluetooth Low Energy broadcast packet - -which can deliver over a year of human-activity recognition data on a single coin cell battery. Finally, we discuss the integration of our HAR system in a smart-fashion wearable for a live two night deployment in an instrumented night club

    The third gravitational lensing accuracy testing (GREAT3) challenge handbook

    Get PDF
    The GRavitational lEnsing Accuracy Testing 3 (GREAT3) challenge is the third in a series of image analysis challenges, with a goal of testing and facilitating the development of methods for analyzing astronomical images that will be used to measure weak gravitational lensing. This measurement requires extremely precise estimation of very small galaxy shape distortions, in the presence of far larger intrinsic galaxy shapes and distortions due to the blurring kernel caused by the atmosphere, telescope optics, and instrumental effects. The GREAT3 challenge is posed to the astronomy, machine learning, and statistics communities, and includes tests of three specific effects that are of immediate relevance to upcoming weak lensing surveys, two of which have never been tested in a community challenge before. These effects include many novel aspects including realistically complex galaxy models based on high-resolution imaging from space; a spatially varying, physically motivated blurring kernel; and a combination of multiple different exposures. To facilitate entry by people new to the field, and for use as a diagnostic tool, the simulation software for the challenge is publicly available, though the exact parameters used for the challenge are blinded. Sample scripts to analyze the challenge data using existing methods will also be provided. See http://great3challenge.info and http://great3.projects.phys.ucl.ac.uk/leaderboard/ for more information

    Anti-biofilm formation of a novel stainless steel against Staphylococcus aureus

    Get PDF
    © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Abstract Staphylococcus aureus (S. aureus) is a bacterium frequently found proliferating on metal surfaces such as stainless steels used in healthcare and food processing facilities. Past research has shown that a novel Cu-bearing 304 type stainless steel (304CuSS) exhibits excellent antibacterial ability (i.e. against S. aureus) in a short time period (24 h.). This work was dedicated to investigate the 304CuSS's inhibition ability towards the S. aureus biofilm formation for an extended period of 7 days after incubation. It was found that the antibacterial rate of the 304CuSS against sessile bacterial cells reached over 99.9% in comparison with the 304SS. The thickness and sizes of the biofilms on the 304SS surfaces increased markedly with period of contact, and thus expected higher risk of bio-contamination, indicated by the changes of surface free energy between biofilm and the steel surfaces. The results demonstrated that the 304CuSS exhibited strong inhibition on the growth and adherence of the biofilms. The surface free energy of the 304CuSS after contact with sessile bacterial cells was much lower than that of the 304SS towards the same culture times. The continuously dissolved Cu2+ ions well demonstrated the dissolution ability of Cu-rich precipitates after exposure to S. aureus solution, from 3.1 ppm (2 days) to 4.5 ppm (7 days). For this to occur, a hypothesis mechanism might be established for 304CuSS in which the Cu2+ ions were released from Cu-rich phases that bond with extracellular polymeric substances (EPS) of the microorganisms. And these inhibited the activities of cell protein/enzymes and effectively prevented planktonic bacterial cells attaching to the 304CuSS metal surface.Peer reviewedFinal Published versio
    corecore