704 research outputs found

    Self-organization in systems of self-propelled particles

    Full text link
    We investigate a discrete model consisting of self-propelled particles that obey simple interaction rules. We show that this model can self-organize and exhibit coherent localized solutions in one- and in two-dimensions.In one-dimension, the self-organized solution is a localized flock of finite extent in which the density abruptly drops to zero at the edges.In two-dimensions, we focus on the vortex solution in which the particles rotate around a common center and show that this solution can be obtained from random initial conditions, even in the absence of a confining boundary. Furthermore, we develop a continuum version of our discrete model and demonstrate that the agreement between the discrete and the continuum model is excellent.Comment: 4 pages, 5 figure

    Core-scale geophysical and hydromechanical analysis of seabed sediments affected by CO2 venting

    Get PDF
    Safe offshore Carbon Capture Utilization and Storage (CCUS) includes monitoring of the subseafloor, to identify and assess potential CO2 leaks from the geological reservoir through seal bypass structures. We simulated CO2-leaking through shallow marine sediments of the North Sea, using two gravity core samples from ∼1 and ∼2.1 m below seafloor. Both samples were subjected to brine−CO2 flow-through, with continuous monitoring of their transport, elastic and mechanical properties, using electrical resistivity, permeability, P-wave velocity and attenuation, and axial strains. We used the collected geophysical data to calibrate a resistivity-saturation model based on Archie’s law extended for clay content, and a rock physics for the elastic properties. The P-wave attributes detected the presence of CO2 in the sediment, but failed in providing accurate estimates of the CO2 saturation. Our results estimate porosities of 0.44 and 0.54, a background permeability of ∼10−15 and ∼10-17 m2, and maximum CO2 saturation of 18 % and 10 % (±5 %), for the sandier (shallower) and muddier (deeper) sample, respectively. The finer-grained sample likely suffered some degree of gas-induced fracturing, exhibiting an effective CO2 permeability increase sharper than the coarser-grained sample. Our core-scale multidisciplinary experiment contributes to improve the general interpretation of shallow sub-seafloor gas distribution and migration patterns

    Controlling spatiotemporal chaos in oscillatory reaction-diffusion systems by time-delay autosynchronization

    Full text link
    Diffusion-induced turbulence in spatially extended oscillatory media near a supercritical Hopf bifurcation can be controlled by applying global time-delay autosynchronization. We consider the complex Ginzburg-Landau equation in the Benjamin-Feir unstable regime and analytically investigate the stability of uniform oscillations depending on the feedback parameters. We show that a noninvasive stabilization of uniform oscillations is not possible in this type of systems. The synchronization diagram in the plane spanned by the feedback parameters is derived. Numerical simulations confirm the analytical results and give additional information on the spatiotemporal dynamics of the system close to complete synchronization.Comment: 19 pages, 10 figures submitted to Physica

    Fredholm Modules on P.C.F. Self-Similar Fractals and their Conformal Geometry

    Full text link
    The aim of the present work is to show how, using the differential calculus associated to Dirichlet forms, it is possible to construct Fredholm modules on post critically finite fractals by regular harmonic structures. The modules are d-summable, the summability exponent d coinciding with the spectral dimension of the generalized laplacian operator associated with the regular harmonic structures. The characteristic tools of the noncommutative infinitesimal calculus allow to define a d-energy functional which is shown to be a self-similar conformal invariant.Comment: 16 page

    Correlation between voxel based morphometry and manual volumetry in magnetic resonance images of the human brain

    Get PDF
    This is a comparative study between manual volumetry (MV) and voxel based morphometry (VBM) as methods of evaluating the volume of brain structures in magnetic resonance images. The volumes of the hippocampus and the amygdala of 16 panic disorder patients and 16 healthy controls measured through MV were correlated with the volumes of gray matter estimated by optimized modulated VBM. The chosen structures are composed almost exclusively of gray matter. Using a 4 mm Gaussian filter, statistically significant clusters were found bilaterally in the hippocampus and in the right amygdala in the statistical parametric map correlating with the respective manual volume. With the conventional 12 mm filter,a significant correlation was found only for the right hippocampus. Therefore,narrowfilters increase the sensitivity of the correlation procedure, especially when small brain structures are analyzed. The two techniques seem to consistently measure structural volume.Trata-se de estudo comparativo entre a volumetria manual(VM) e a morfometria baseada no vóxel (MBV), como métodos de avaliação do volume de estruturas cerebrais. Os volumes do hipocampo e da amídala de 16 pacientes de pânico e 16 controles sadios medidos através da VM foram correlacionados com os volumes de matéria cinzenta estimados pela MBV.As estruturas escolhidas são constituídas quase exclusivamente de matéria cinzenta. Utilizando um filtro Gaussiano de 4 mm, encontram-se, bilateralmente, aglomerados significativos de correlação nas duas estruturas no mapa estatístico paramétrico, correspondendo ao respectivo volume manual. Com o filtro convencional de 12 mm, apenas uma correlação significativa foi encontrada no hipocampo direito. Portanto, filtros estreitos aumentam a sensibilidade do procedimento de correlação,especialmente quando estruturas pequenas são analisadas. Ambas as técnicas parecem medir consistentemente o volume estrutural.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)(FAEPA) Hospital das Clínicas da FMRPUSP - Fundação de Apoio ao Ensino, Pesquisa e Asssistênci

    All Inequalities for the Relative Entropy

    Full text link
    The relative entropy of two n-party quantum states is an important quantity exhibiting, for example, the extent to which the two states are different. The relative entropy of the states formed by reducing two n-party to a smaller number mm of parties is always less than or equal to the relative entropy of the two original n-party states. This is the monotonicity of relative entropy. Using techniques from convex geometry, we prove that monotonicity under restrictions is the only general inequality satisfied by relative entropies. In doing so we make a connection to secret sharing schemes with general access structures. A suprising outcome is that the structure of allowed relative entropy values of subsets of multiparty states is much simpler than the structure of allowed entropy values. And the structure of allowed relative entropy values (unlike that of entropies) is the same for classical probability distributions and quantum states.Comment: 15 pages, 3 embedded eps figure

    Asymptotic Scaling of the Diffusion Coefficient of Fluctuating "Pulled" Fronts

    Full text link
    We present a (heuristic) theoretical derivation for the scaling of the diffusion coefficient DfD_f for fluctuating ``pulled'' fronts. In agreement with earlier numerical simulations, we find that as NN\to\infty, DfD_f approaches zero as 1/ln3N1/\ln^3N, where NN is the average number of particles per correlation volume in the stable phase of the front. This behaviour of DfD_f stems from the shape fluctuations at the very tip of the front, and is independent of the microscopic model.Comment: Some minor algebra corrected, to appear in Rapid Comm., Phys. Rev.

    Strong duality in conic linear programming: facial reduction and extended duals

    Full text link
    The facial reduction algorithm of Borwein and Wolkowicz and the extended dual of Ramana provide a strong dual for the conic linear program (P)sup<c,x>AxKb (P) \sup {<c, x> | Ax \leq_K b} in the absence of any constraint qualification. The facial reduction algorithm solves a sequence of auxiliary optimization problems to obtain such a dual. Ramana's dual is applicable when (P) is a semidefinite program (SDP) and is an explicit SDP itself. Ramana, Tuncel, and Wolkowicz showed that these approaches are closely related; in particular, they proved the correctness of Ramana's dual using certificates from a facial reduction algorithm. Here we give a clear and self-contained exposition of facial reduction, of extended duals, and generalize Ramana's dual: -- we state a simple facial reduction algorithm and prove its correctness; and -- building on this algorithm we construct a family of extended duals when KK is a {\em nice} cone. This class of cones includes the semidefinite cone and other important cones.Comment: A previous version of this paper appeared as "A simple derivation of a facial reduction algorithm and extended dual systems", technical report, Columbia University, 2000, available from http://www.unc.edu/~pataki/papers/fr.pdf Jonfest, a conference in honor of Jonathan Borwein's 60th birthday, 201

    Water waves generated by a moving bottom

    Full text link
    Tsunamis are often generated by a moving sea bottom. This paper deals with the case where the tsunami source is an earthquake. The linearized water-wave equations are solved analytically for various sea bottom motions. Numerical results based on the analytical solutions are shown for the free-surface profiles, the horizontal and vertical velocities as well as the bottom pressure.Comment: 41 pages, 13 figures. Accepted for publication in a book: "Tsunami and Nonlinear Waves", Kundu, Anjan (Editor), Springer 2007, Approx. 325 p., 170 illus., Hardcover, ISBN: 978-3-540-71255-8, available: May 200
    corecore