593 research outputs found

    Cost functions to estimate a posteriori probabilities in multiclass problems

    Full text link

    Entanglement entropy in quantum spin chains with finite range interaction

    Full text link
    We study the entropy of entanglement of the ground state in a wide family of one-dimensional quantum spin chains whose interaction is of finite range and translation invariant. Such systems can be thought of as generalizations of the XY model. The chain is divided in two parts: one containing the first consecutive L spins; the second the remaining ones. In this setting the entropy of entanglement is the von Neumann entropy of either part. At the core of our computation is the explicit evaluation of the leading order term as L tends to infinity of the determinant of a block-Toeplitz matrix whose symbol belongs to a general class of 2 x 2 matrix functions. The asymptotics of such determinant is computed in terms of multi-dimensional theta-functions associated to a hyperelliptic curve of genus g >= 1, which enter into the solution of a Riemann-Hilbert problem. Phase transitions for thes systems are characterized by the branch points of the hyperelliptic curve approaching the unit circle. In these circumstances the entropy diverges logarithmically. We also recover, as particular cases, the formulae for the entropy discovered by Jin and Korepin (2004) for the XX model and Its, Jin and Korepin (2005,2006) for the XY model.Comment: 75 pages, 10 figures. Revised version with minor correction

    Mean-square performance of a convex combination of two adaptive filters

    Get PDF
    Combination approaches provide an interesting way to improve adaptive filter performance. In this paper, we study the mean-square performance of a convex combination of two transversal filters. The individual filters are independently adapted using their own error signals, while the combination is adapted by means of a stochastic gradient algorithm in order to minimize the error of the overall structure. General expressions are derived that show that the method is universal with respect to the component filters, i.e., in steady-state, it performs at least as well as the best component filter. Furthermore, when the correlation between the a priori errors of the components is low enough, their combination is able to outperform both of them. Using energy conservation relations, we specialize the results to a combination of least mean-square filters operating both in stationary and in nonstationary scenarios. We also show how the universality of the scheme can be exploited to design filters with improved tracking performance

    Quantifying Quantum Correlations in Fermionic Systems using Witness Operators

    Full text link
    We present a method to quantify quantum correlations in arbitrary systems of indistinguishable fermions using witness operators. The method associates the problem of finding the optimal entan- glement witness of a state with a class of problems known as semidefinite programs (SDPs), which can be solved efficiently with arbitrary accuracy. Based on these optimal witnesses, we introduce a measure of quantum correlations which has an interpretation analogous to the Generalized Robust- ness of entanglement. We also extend the notion of quantum discord to the case of indistinguishable fermions, and propose a geometric quantifier, which is compared to our entanglement measure. Our numerical results show a remarkable equivalence between the proposed Generalized Robustness and the Schliemann concurrence, which are equal for pure states. For mixed states, the Schliemann con- currence presents itself as an upper bound for the Generalized Robustness. The quantum discord is also found to be an upper bound for the entanglement.Comment: 7 pages, 6 figures, Accepted for publication in Quantum Information Processin

    Construção de cartas centílicas da coordenação motora de crianças dos 6 aos 11 anos da Região Autónoma dos Açores, Portugal

    Get PDF
    Objectivo: Construir cartas centĂ­licas e respectiva distribuição de valores da Coordenação Motora em crianças açorianas dos 6 aos 11 anos segundo o gĂ©nero e idade. Metodologia: A amostra Ă© constituĂ­da por 2359 meninas e 2365 meninos da RegiĂŁo AutĂłnoma dos Açores. A Coordenação Motora foi avaliada atravĂ©s da bateria KTK, que compreende quatro provas: equilĂ­brio Ă  retaguarda, saltos laterais, saltos monopedais e transposição lateral. As estatĂ­sticas descritivas bĂĄsicas foram calculadas no SPSS 15. os centis foram estimados pelo mĂ©todo da mĂĄxima verosimilhança no software LMS versĂŁo 1.32 e as cartas centĂ­licas construĂ­das no Excell. Resultados: Em todas as provas da bateria de testes KTK, para ambos os sexos, Ă© visĂ­vel um incremento do desempenho quer dos valores mĂ©dios quer para categorias extremas de performance, seja o P3 ou P10, ou ainda os P90 e P97, nĂŁo obstante uma forte variação em cada valor discreto de idade e sexo. ConclusĂ”es: Com base nos valores centĂ­licos do desempenho da Coordenação Motora pode traçar-se perfis configuracionais e interpretar-se o seu significado relativamente ao que Ă© esperado para uma dada idade e ano de escolaridade. Discorre daqui o contributo deste estudo em termos pedagĂłgicos para a disciplina de Actividade FĂ­sica e Desportiva no 1Âș ciclo do Ensino BĂĄsico

    Many body physics from a quantum information perspective

    Full text link
    The quantum information approach to many body physics has been very successful in giving new insight and novel numerical methods. In these lecture notes we take a vertical view of the subject, starting from general concepts and at each step delving into applications or consequences of a particular topic. We first review some general quantum information concepts like entanglement and entanglement measures, which leads us to entanglement area laws. We then continue with one of the most famous examples of area-law abiding states: matrix product states, and tensor product states in general. Of these, we choose one example (classical superposition states) to introduce recent developments on a novel quantum many body approach: quantum kinetic Ising models. We conclude with a brief outlook of the field.Comment: Lectures from the Les Houches School on "Modern theories of correlated electron systems". Improved version new references adde

    Block Spin Density Matrix of the Inhomogeneous AKLT Model

    Full text link
    We study the inhomogeneous generalization of a 1-dimensional AKLT spin chain model. Spins at each lattice site could be different. Under certain conditions, the ground state of this AKLT model is unique and is described by the Valence-Bond-Solid (VBS) state. We calculate the density matrix of a contiguous block of bulk spins in this ground state. The density matrix is independent of spins outside the block. It is diagonalized and shown to be a projector onto a subspace. We prove that for large block the density matrix behaves as the identity in the subspace. The von Neumann entropy coincides with Renyi entropy and is equal to the saturated value.Comment: 20 page

    A Model System for Dimensional Competition in Nanostructures: A Quantum Wire on a Surface

    Get PDF
    The retarded Green’s function (E−H + iΔ)−1is given for a dimensionally hybrid Hamiltonian which interpolates between one and two dimensions. This is used as a model for dimensional competition in propagation effects in the presence of one-dimensional subsystems on a surface. The presence of a quantum wire generates additional exponential terms in the Green’s function. The result shows how the location of the one-dimensional subsystem affects propagation of particles

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps−1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
    • 

    corecore